Cambrian granulite to upper amphibolite facies metamorphism of post-795 Ma sediments in Madagascar

Masahiro ITO*, Kazuhiro SUZUKI** and Setsuo YOGO**

*School of Informatics and Sciences, Nagoya University, Nagoya 464-01, Japan **Department of Ert and Planetary Sciences, Graduate School of Sciences, Nagoya University, Nagoya 464-01, Japan (Received November 6, 1997 / Accepted November 26, 1997)

ABSTRACT

The CHIME monazite and xenotime ages were determined for two paragneisses from Madagascar. The biotite-sillimanite-cordierite-quartz-microclineplagioclase schist at Ihosy in southern Madagascar contains core-mantle monazite grains as well as chronologically unzoned ones. The unzoned monazite grains (8 of 11 analyzed grains) give a CHIME age of 527 ± 15 Ma. Two zoned grains show core ages of 1640 ± 180 Ma and 795 ± 75 Ma with mantles of 550 ± 50 and 535 ± 10 Ma, respectively. The kyanite- and corundum-bearing cordieritesillimanite-muscovite-biotite-plagioclase-quartz gneiss at Maevatanana in northwestern Madagascar contains both monazite and xenotime. Monazite and xenotime grains are chronologically uniform, and give CHIME ages of 534 ± 10 and 530 ± 32 Ma, respectively. These chronological data suggest that the highgrade paragneisses in Madagascar, if not all, formed through a single thermal event at ca. 530 Ma from post-795 Ma sediments. This metamorphism can be linked to the continental collision that resulted in Gondwana supercontinent.

INTRODUCTION

Gondwana supercontinent existed over 300 m.y. before its break up in the Mesozoic. The evolution of this supercontinent, particularly of East Africa, Madagascar, Southern India, Sri Lanka and East Antarctica, were recently discussed on the basis of lithology, metamorphism and tectonics (e.g. Yoshida et al., 1992; Windley et al., 1994: Shiraishi et al., 1994: Kröner et al., 1996). The broad aspect of the picture for the Gondwana connection are generally agreed, but considerable debates still remain in detail, especially the location of the collision zone. Since Gondwana supercontinent formed through the late Cambrian (-latest Proterozoic) continental collision of East and West Gondwana, the distribution of Cambrian metamorphic rocks may play a key role in the analysis of the collision tectonics.

Recent geochronological studies have brought forth Cambrian metamorphic ages for high-grade paragneisses in the Kerala kondalite belt of southernmost India (Choudhary et al., 1992; Santosh et al., 1992; Bindu et al., 1996). Similar high-grade paragneisses are known to occur in Madagascar (Windley et al., 1994). Some of them were dated to be around 550 Ma (e.g. Knoner et al., M. Ito et al.

1996, and their references). But little is known about the extension of the ca. 550 Ma metamorphic rocks in Madagascar. In order to shed more light on the collision tectonics of Gondwana, we have made the CHIME dating of monazite and xenotime from two samples of High-grade paragneisses from Madagascar.

Fig. 1. Simplified and schematic geologic map showing the main basements of Madagascar (from Widley et al., 1994).

GENERAL GEOLOGY AND SAMPLE DESCRIPTION

The basement rocks in Madagascar are divided into the southern and central-northern sectors by the northwest trending Ranotsara shear zone (Windley et al., 1994; Fig. 1). The southern sector consists predominantly of highgrade metamorphic rocks formed under the granulite and upper amphibolite facies conditions. Particularly common are cordierite- and sillimanite-bearing paragneisses with intercalated marble, metaquartzite and amphibolite layers. They generally trend in NS direction. The central-northern sector is underlain mainly by granitoids and amphibolite (greenstone belt) with a subordinate amount of paragneiss. This sector is traversed by a north trending 100-150 km wide dextral shear zone of probable Pan-African age; the western margin of the shear zone runs through around Antananarivo. Rocks in the dextral shear zone were metamorphosed under the granulite and upper amphibolite facies conditions, and include reworked older basement. Two paragneiss samples were collected for the present CHIME dating; biotite-sillimanite-cordierite gneiss from Ihosy in the southern sector and kyanite- and corundum-bearing cordierite-sillimanite-muscovite-biotite gneiss from Maevatanana in the western part of the central-northern sector.

Biotite-sillimanite-cordierite-quartz-microcline-plagioclase gneiss from Ihosy

This rock is composed of plagioclase, microcline, quartz, biotite, cordierite, sillimanite and opaque mineral, together with small amounts of zircon, apatite and monazite. Plagioclase, sodic oligoclase in composition, is granoblastic and is slightly sericitized. Biotite, sillimanite and quartz together with fluid inclusions are found within plagioclase grains. Myrmekite is rarely developed. Microcline is commonly string and film perthite with well developed microcline twinning. It includes sillimanite and plagioclase. Quartz show often undulatory extinction and includes sillimanite, biotite, plagioclase, microcline, apatite and opaque mineral. Cordierite occurs as granoblastic grains with inclusions of sillimanite, biotite, quartz and opaque mineral. Some cordierite grains are twinned. It is slightly altered. Sillimanite is coarse-grained, sometimes euhedral or subhedral, and include quartz, biotite, zircon and opaque mineral. It shows often undulatory extinction. The sillimanite inclusion in cordierite, quartz and biotite are of small and short prismatic form, and are frequently oriented. Biotite is oriented along the schistosity. It is pleochroic; X=nearly colourless, Y=brown and Z=light brown. Symplectic biotite is also Inclusions in biotite are sillimanite, apatite, zircon, monazite, and found. opaque mineral. Muscovite is very small in amount, and may be derived from the alteration of plagioclase. Monazite is anhedral, and ranges in size from 0.02 to 0.15 mm.

Kyanite- and corundum-bearing cordierite-sillimanite-muscovite-biotite-plagioclase-quartz gneiss from Maevatanana

Biotite-rich layers are finely alternated with feldspathic layers which are somewhere coarse-grained. This rock is composed of plagioclase, quartz,

biotite, muscovite, cordierite and sillimanite together with accessory corundum, kyanite, zircon, apatite, monazite, xenotime and opaque mineral. Plagioclase (oligoclase) is granoblastic and is slightly sericitized. It includes biotite, sillimanite, muscovite and zircon. Quartz is also granoblastic with inclusions of biotite, sillimanite and muscovite. Biotite is commonly associated with muscovite and sillimanite. It is pleochroic; X= nearly colourless, Y= yellowish olive green and Z= olive green. Inclusions in biotite are apatite, zircon, monazite and opaque mineral. Sillimanite is fibrous to very long prismatic, intimately intergrown with muscovite and biotite. Cordierite is granoblastic with inclusions of biotite, sillimanite and opaque mineral. It is moderately, some-Muscovite flakes include plagioclase, quartz, biotimes completely, altered. tite, sillimanite, corundum and kyanite. Corundum and kyanite are always coated with muscovite. Monazite and xenotime occur as tiny grains, but exceptionally large grains exceed 0.04 mm in size.

CHIME AGES

Monazite and xenotime grains in polished thin sections, prepared for the conventional electron microprobe analyses, were analyzed on JEOL JXA-733 electron microprobe equipped with three wavelength dispersive-type spectrometers. Instrument operating conditions were 15 kv accelerating voltage, $0.02-0.15\mu$ A current and 5 μ m probe diameter. X-ray intensities were integrated 200 σ for the lines and 100s for backgrounds at two optimum positions on both sides of the lines. The detection limits of ThO₂, UO₂ and PbO at 2σ confidence level are 0.012, 0.007 and 0.004 wt.%, respectively, and possible errors in the determination of ThO₂, UO₂ and PbO are about 14% for 0.1 wt.% of the concentrations. The analytical results are listed in Table 1. CHIME ages were calculated through the method described by Suzuki and Adachi (1991a,b, 1994), Adachi and Suzuki (1992) and Suzuki et al. (1994).

Biotite-sillimanite-cordierite-quartz-microcline-plagioclase gneiss from Ihosy

Eleven monazite grains were analysed. Nine of these grains are chronologically unzoned, and two grains show a core-mantle relation. Figure 2 shows the PbO vs.ThO₂* plots of chronologically unzoned monazite grains. Data points, except those for grain margins (open circle), are arrayed linearly on the diagram. They are regressed with an isochron of 527 ± 15 Ma (MSWD=0.28) with an intercept value of -0.0010 ± 0.0045 .

Figures 3a shows the PbO vs.ThO₂* plots of analytical data of a coremantle monazite grain (M02). Data points for the core (solid square) and the mantle (solid circle) are separately arrayed, and define different isochrons of 1640 ± 180 Ma (MSWD=0.66) and 550 ± 50 Ma, respectively. Data points between the 1640 and 550 Ma isochrons (open square, cross and triangle) are for the core-mantle boundary region, but do not define either a certain area in the cross section or any isochrons. The textural feature suggests an overlap of the 550 Ma mantle on the 1640 Ma core at analyzed points on the cross

Table 1.Microprobe analyses of ThO2, UO2 and PbO of monazite (M) and xenotime (X)from metamorphic rocks at Ihosy and Maevatanana, Madagscar.

Spot No.	ThO2 (wt.%)	UO2 (wt.%)	PbO (wt.%)	Age (Ma)	ThO2* (wt.%)	Spot No.	ThO2 (wt.%)	UO2 (wt.%)	PbO (wt.%)	Age (Ma)	ThO2* (wt.%)
Biotite-sillima	nite-coi	dierite	gneiss	(Ihos	v)	M02-35 3043	617	0 228	0 491	1604	7 00
M01-01	6 38	0.084	0 149	525	6 66	M02-36 3049	5 58	0.166	0.276	1039	6.16
M01-02	6.32	0.049	0.147	534	6.48	M02-37 3057	5 59	0.135	0.136	529	6.04
M01-03	6.43	0.079	0.152	532	6.69	M02-38 3063	5.80	0.136	0.120	533	6.25
M01-04	5 30	0.075	0.132	534	5.88	M02-39 3069	5.60	0.170	0.172	468	6.25
M01-05	6.24	0.145	0.124	503	6.72	M02-40 3601	5 74	0.089	0.121	519	6.03
M01-06	5 73	0.170	0 1 3 9	517	6.29	M02-41 3609	5 51	0.009	0.133	538	5.85
M01-07 r	5 46	0 117	0.120	482	5.84	M02-42 3616	6.28	0.153	0 174	600	6 79
M01-08 r	5 47	0.174	0 119	462	6.05	M02-43 3625	5.62	0.225	0 461	1634	6 4 4
M01-09 r	5 67	0 170	0.129	488	6 23	M02-44 3631	5 53	0.302	0 471	1622	6 64
M01-10 r	5 63	0 207	0.126	469	6 31	M02-45 3637	5.10	0.637	0.511	1577	7 42
M01-11 r	5 75	0 191	0 1 3 9	479	6 38	M02-46 3644	6.03	0 237	0 449	1497	6.89
M02-01 4030	6.98	0.348	0.574	1592	8.25	M02-47 3651	6.04	0.112	0 163	597	6 4 1
M02-02 4033	7.26	0.245	0.572	1605	8.15	M02-48 3657	5.65	0.135	0.138	531	6.10
M02-03 4038	7.29	0.246	0.587	1638	8.19	M02-49 3663	5.74	0.139	0.137	519	6.19
M02-04 4041	7.48	0.276	0.568	1534	8.48	M02-50 3669	5.52	0.167	0.112	434	6.07
M02-05 2034	7.09	0.335	0.510	1415	8.28	M02-51 4305	6.61	0.112	0.163	546	6.98
M02-06 4628	6.06	0.143	0.194	693	6.54	M02-52 4311	6.43	0.119	0.151	520	6.82
M02-07 5330	6.72	0.112	0.163	538	7.09	M02-53 4319	5.90	0.169	0.149	540	6.46
M02-08 2510	6.80	0.114	0.157	515	7.17	M02-54 4336	5.42	0.254	0.306	1125	6.31
M02-09 1349	6.72	0.138	0.164	536	7.18	M02-55 4345	5.54	0.107	0.130	519	5.90
M02-10 5343	6.82	0.154	0.169	541	7.34	M02-56 4351	5.61	0.105	0.137	540	5.96
M02-11 0236	6.31	0.174	0.135	460	6.88	M02-57 4357	5.54	0.132	0.134	527	5.98
M02-12 0826	6.21	0.143	0.130	458	6.68	M02-58 4366	5.48	0.177	0.116	448	6.06
M02-13 0836	6.15	0.150	0.150	530	6.65	M02-59 5014	5.46	0.124	0.121	485	5.87
M02-14 0641	6.00	0.123	0.133	488	6.41	M02-60 5023	4.15	0.093	0.103	541	4.46
M02-15 0852	5.67	0.170	0.139	524	6.23	M02-61 5037	5.28	0.108	0.126	527	5.64
M02-16 1417	5.57	0.141	0.131	510	6.04	M02-62 5049	5.62	0.137	0.137	530	6.07
M02-17 1425	5.26	0.133	0.131	540	5.70	M02-63 5056	5.48	0.251	0.143	532	6.31
M02-18 1433	5.53	0.097	0.127	511	5.85	M02-64 5809	5.73	0.150	0.118	446	6.23
M02-19 1453	5.52	0.148	0.130	509	6.01	M02-65 5823	5.27	0.128	0.122	505	5.69
M02-20 1459	5.25	0.127	0.119	495	5.67	M02-66 5840	5.81	0.153	0.128	476	6.31
M02-21 2206	5.50	0.133	0.129	509	5.94	M02-67 6415	5.63	0.142	0.140	538	6.10
M02-22 2212	5.56	0.124	0.137	539	5.97	M02-68 6425	5.71	0.136	0.126	480	6.15
M02-23 2219	5.69	0.100	0.129	503	6.02	M02-69 6429	5.95	0.152	0.121	442	6.46
M02-24 2224	4.10	0.040	0.119	658	4.24	M02-70 6436	3.05	0.765	0.102	432	5.56
M02-25 2238	5.40	0.247	0.438	1590	6.30	M02-71 6728	5.80	0.162	0.142	526	6.33
M02-26 2254	5.72	0.129	0.143	546	6.15	M02-72 4645	5.75	0.113	0.137	524	6.12
M02-27 2259	5.12	0.137	0.113	477	5.57	M02-73 4045	5.85	0.125	0.140	524	6.26
M02-28 3001	5.76	0.106	0.127	489	6.11	M02-74 3345	6.60	0.253	0.545	1655	7.53
M02-29 3007	5.76	0.082	0.127	496	6.03	M02-75 2445	5.59	0.148	0.136	526	6.08
M02-30 3013	5.72	0.101	0.139	538	6.05	M02-76 1945	5.77	0.133	0.134	508	6.21
M02-31 3020	5.47	0.098	0.131	529	5.80	M02-77 2152	5.98	0.157	0.149	538	6.50
M02-32 3026	5.84	0.382	0.528	1667	7.24	M02-78 2752	5.65	0.123	0.132	510	6.06
M02-33 3031	5.42	0.591	0.546	6 1647	7.58	M02-79 3252	5.89	0.173	0.233	840	6.48
M02-34 3038	6.10	0.271	0.503	1624	7.09	M02-80 3752	5.76	0.121	0.142	542	6.16

Table 1. (continued).

Spot No.	ThO ₂	UO2	PbO	Age	ThO ₂ *	Spot No.	ThO ₂	UO2	PbO	Age	ThO ₂ *
	(wt.%)	(wt.%)	(wt.%)	(Ma)	(wt.%)		(wt.%)	(wt.%)	(wt.%)	(Ma)	(wt.%)
M02-81 4352	5.93	0.104	0.136	511	6.27	M08-13	6.74	0.131	0.161	526	7.17
M02-82 4362	5 80	0 141	0 140	524	6 27	M08-14	6 88	0 141	0 1 5 6	498	7 35
M02-83 3762	5.78	0.133	0.144	542	6.22	M08-15	6.69	0.138	0.155	510	7.15
M02-84 3262	5.77	0.140	0.138	520	6.24	M08-16	6.67	0.136	0.159	523	7.12
M02-85 2538	5 95	0 1 9 4	0 473	1623	6 66	M08-17	6.63	0 144	0 1 5 2	502	7 11
M02-86 2530	6.15	0.308	0.509	1602	7 27	M08-18	6.81	0 126	0 164	534	7 23
M02-87 2030	5 52	0.567	0.480	1457	7.56	M08-19	6.63	0 1 2 3	0 157	525	7.04
M03-01	5 48	0 1 2 2	0 131	525	5.88	M08-20	6 77	0.128	0 157	513	7 20
M03-02	5 72	0.168	0.136	509	6.28	M09-01	6 41	0.120	0154	521	6.96
M03-03	5 56	0.188	0.130	511	6.18	M09-02	6.45	0.161	0.151	503	6.98
M03-04	5 35	0.100	0.121	554	5 94	M09-03	6 55	0.101	0.161	528	7.15
M03-05	5.66	0 149	0.142	540	616	M09-04	6.53	0.158	0.163	542	7.06
M04-01	5.68	0.172	0.138	519	6.25	M09-05	6 46	0.163	0.105	521	7.00
M04-02	5 59	0.172	0.130	519	6.22	M09-06	6 44	0.103	0.155	513	6.91
M04-03	5 58	0.171	0.150	544	6.17	M09-07	6 39	0.142	0.151	537	6.96
M04-04	5.50	0.159	0.145	515	6.12	M09-08	6.27	0.173	0.153	532	6 74
M04-05	5.65	0.159	0.134	495	6.21	M09-09	5.60	0.141	0.133	529	6.22
M04-06	5 55	0.177	0.131	554	6.14	M09-10	6 56	0.105	0.140	527	0.22 7.14
M04-07	5.55	0.199	0.143	491	6.42	M09-11	6.42	0.175	0.160	543	6 97
M04-08	5.69	0.172	0.134	535	6.76	M09-12	6.61	0.105	0.101	518	7.10
M04-09	5 73	0.172	0.143	526	6.41	M09-13	6.48	0.176	0.150	535	7.10
M04-10	5.65	0.200	0.145	540	6 29	M09-14	5 85	0.170	0.101	537	6.48
M05-01	2 90	0.172	0.143	492	3.98	M09-15	5.65	0.171	0.140	529	631
M05-02	2.90	0.320	0.005	552	3.90	M10-01	7 25	0.136	0.142	518	7 70
M05-03	2.00	0.257	0.091	502	3.87	M10-02	10.5	0.150	0.170	521	11 18
M05-04	2.97	0.252	0.001	528	1 13	M10-03	13.0	0.193	0.233	53/	13.76
M05-05	3.20	0.201	0.093	520	4.15	M10-03	0.00	0.255	0.313	500	0.52
M06-01	7.52	0.274	0.094	521	7.08	M10-04	9.00	0.157	0.200	521	9.52
M06-02	7.54	0.139	0.170	550	7.90	M10-05	9.05	0.150	0.210	526	9.55
M06-03	7.50	0.124	0.187	515	813	M10-07	9.07 6.45	0.100	0.210	520	9.02 7.03
M06-04	7.43	0.204	0.170	520	8.13 8.04	M10-08	6.50	0.170	0.100	505	7.05
M06-05	7.55	0.134	0.181	529	0.04 7.97	M10-08	6.50	0.170	0.152	515	6.05
M07-01	6.85	0.120	0.170	510	7.07	M10-10	6.67	0.120	0.152	517	0.95
M07-02	6.25	0.103	0.105	540	7.40 6.71	M10-11	6.60	0.119	0.133	526	7.07
M07-02 M08 01 r	6.66	0.140	0.133	160	0.71	M10 - 11 M10 12 r	6.59	0.105	0.102	320 460	7.24
M08-011 M08-02	0.00	0.120	0.140	408	7.00	M10-12 I M10-13	0.38	0.123	0.137	400 526	7.00
M08-02	7.05	0.141	0.138	490	7.49	M10-13	5.95	0.140	0.143	520	0.40 5.00
M08-03	0.90	0.123	0.100	500	7.09	M10-14	5.50	0.150	0.133	510	5.99
M08-04	0.0/	0.125	0.155	519	7.08	M10-15	0.22	0.157	0.147	519	0.07
W108-05	/.00	0.120	0.155	518	1.39	W10-10	5.93	0.103	0.147	536	0.45
M08-00	6.84	0.124	0.155	503	1.25	M10-17	0.38	0.123	0.160	537	6.99
WIU8-U/	0.03	0.128	0.162	539	7.05	W10-18	11.0	0.181	0.2/3	52/	12.2
WIU8-U8	0./4	0.120	0.160	525	/.18	M10-19	5.36	0.140	0.127	510	5.85
M08-09	6.70	0.137	0.161	529	/.15	M10-20	5./1	0.142	0.140	533	6.18
WIU8-IU	6.45	0.144	0.157	532	6.92	M10-21	5.77	0.147	0.139	523	6.26
MU8-11	6.63	0.136	0.146	485	7.08	M10-22	4.94	0.148	0.124	537	5.43
M08-12	6.74	0.126	0.163	533	7.16	M10-23	6.34	0.169	0.157	533	6.90

Table 1. (continued).

Spot No.	ThO2 (wt.%)	UO2 (wt.%)	PbO (wt.%)	Age (Ma)	ThO2* (wt.%)	Spot No.	ThO2 (wt.%)	UO2 (wt.%)	PbO (wt.%)	Age (Ma)	ThO2* (wt.%)
M10-24	4 4 9	0 321	0 1 2 6	531	5 56	M11-40 4364	3 75	0.079	0.092	537	4 01
M10-25	6 31	0 1 3 2	0 149	518	6 7 5	M11-41 5103	7 25	0 1 3 1	0.177	541	7.68
M10-26	7 21	0 163	0 173	526	7 74	M11-42 5107	7.58	0.138	0.184	536	8.04
M10-27 r	6 44	0.102	0.175	5 471	7 71	M11-43 5121	8 46	0.150	0.101	538	8.85
M10-28	6.64	0.115	0 160	536	7.02	M11-44c5135	10.5	0.384	0.203	813	11.8
M10-29	6.63	0 1 3 9	0 1 59	525	7.09	M11-45 5143	8 86	0.500	0.243	542	10.5
M10-30	5 19	0.157	0.159	532	7.47	M11-46 5151	8 16	0.275	0.245	532	9.07
M11-01 0632	6 64	0.007	0.163	530	7.24	M11-47 5158	8.03	0.275	0.205	541	8.51
M11-02.0638	6.66	0.185	0 161	520	7.2.7	M11-48 5164	6 79	0.140	0.170	544	7 31
M11-03 0646	6.29	0.166	0.152	523	6.83	M11-49 6002	7 19	0.126	0.103	533	7.61
M11-04 0654	5.97	0.100	0.132	531	6.60	M11-50 6013	8 31	0.120	0.175	530	8 75
M11-05r0051	5 27	0.172	0.112	507	6.69	M11-51c6026	10.7	0.152	0.201	795	12.0
M11-06 1030	6.64	0.159	0.160	523	717	M11-52c6033	10.7	0.346	0.400	792	11.6
M11-07 1034	6.64	0.125	0.158	\$ 522	7.12	M11-53 6044	8 29	0.141	0.399	535	8 76
M11-08 1043	6.67	0.14	0.150	533	7.21	M11-54 6053	8.17	0.141	0.199	539	8.63
M11-09 1051	6 36	0.169	0.158	\$ 535	6.92	M11-55 6060	7.01	0.157	0.170	535	7.51
M11-10 1056	6.06	0.169	0.150	557	6.62	M11-56 6064	5.03	0.151	0.171	545	5 52
M11_11r1814	6.69	0.100	0.127	1 470	7.01	M11-57 6903	8 46	0.130	0.120	536	8.93
M11-12 1819	6.76	0.077	0.140	539	7.15	M11-58 6911	7 79	0.141	0.204	531	8.15
M11-13 1829	7.07	0.134	0.167	522	7.52	M11-59c6917	11.0	0.100	0.104	801	12.2
M11-14 1837	7.21	0.134	0.107	1 534	7.64	M11-60c6926	9.70	0.330	0.420	804	10.8
M11-15 1844	7.21	0.151	0.179	553	7.59	M11-61 6935	8 34	0.320	0.371	530	8 76
M11-16 1855	6.48	0.161	0.173	544	7.02	M11-62 6942	8.04	0.129	0.201	525	8.70
M11-17 1861	6.67	0.158	0.165	546	7.02	M11-63 6949	8.09	0.132	0.191	531	8.52
M11_18r1869	4.63	0.120	0.107	5 488	5 10	M11-64 6955	7.64	0.132	0.193	5/2	8 10
M11-10/2608	6.80	0.145	0.100	512	7 31	M11-65 6961	2 2 2 2	0.139	0.187	5/10	3.03
M11-19 2000	7 25	0.130	0.100	520	7.51	M11-66 7809	2.22	0.243	0.071	528	9.05 9.15
M11-20 2013	7.07	0.125	0.173	543	7.00	M11-67c7817	0.33	0.120	0.165	520 708	10.5
M11_22_2632	7.06	0.123	0.173	5/1	7.49	M11-68c7825	9.55	0.356	0.300	805	10.5
M11-22 2032 M11-23 2641	7.00	0.151	0.173	53/	8.07	M11-39c7833	9.55	0.300	0.303	803	0.05
M11-23 2648	7.08	0.110	0.105	541	0.07 7 <i>4</i> 1	M11-70 7841	8.67	0.520	0.343	534	9.95
M11_25 2655	6.61	0.104	0.171	536	7.00	M11_71 7840	7.07	0.131	0.209	527	9.17
M11-26 2663	6.58	0.117	0.100	2 518	7.00	M11_72 7856	2.85	0.150	0.100	540	1 88
M11-20 2003	1 96	0.170	0.130	530	6.10	M11-72 7850	11.0	0.309	0.114	521	4.00
M11-27 2071 M11-28 3506	7.05	0.343	0.140	545	7 50	M11_74 8820	0.10	0.347	0.277	536	12.2
M11_20 3513	7.03	0.134	0.174	571	7.50	M11_75 8833	9.10	0.387	0.237	520	10.4
M11-29 3513 M11-30 3521	7.25	0.121	0.170	532	7.05	M11-76 8839	8 08	0.422	0.204	535	0.70
M11_31 3529	7.56	0.077	0.172	538	7.02	M11_77 8844	6 30	0.210	0.221	542	6.06
M11-32 3536	7.50	0.120	0.182	534	8.08	M11_78 8850	0.39	0.172	0.101	537	0.90 3 10
M11-32 3530	7.01	0.140	0.10	5/1	8.83	M11_70 0628	6.56	0.201	0.073	530	7.40
M11-34 3553	7 3 2	0.327	0.202	520	7.66	M11_80 9633	5.61	0.234	0.170	535	6.42
M11_35r4300	7.32	0.103	0.173	, 529 1 <u>4</u> 81	7.60	M11_81 9638	5.01	0.247	0.140	530	7.23
M11_36 /277	7.50	0.121	0.137	+01 5/1	7.09	M11_87 06/1	J.02 1 70	0.423	0.104	554	1.23
M11_37 /3/0	8 72	0.120	0.102) 556	9.73	10111-02 7041	4.28	0.403	0.138	550	5.02
M11_38 / 3/0	7 02	0.433	0.230	550	2.75 8.05						
M11-39 4357	7 69	0.124	0.185	5 537	8.10						
				/							

Table 1. (continued).

Spot No.	ThO2 (wt.%)	UO2 PbC (wt.%) (wt.%	Age (Ma)	ThO2* (wt.%)	Spot No.	ThO2 (wt.%)	UO2 (wt.%)	PbO (wt.%)	Age (Ma)	ThO2* (wt.%)
M01-01	10.7	1.34 0.3	50 544	15.1	X01-01	0.41	1 1.49	0.123	545	1.612
M01-02	10.8	1.31 0.3	42 531	15.1	X01-02	0.47	7 1.64	0.136	542	1.789
M01-03	10.4	1.19 0.3	23 529	14.3	X01-03	0.48	2 2.06	0.166	537	2.209
M01-04	10.6	0.890 0.3	08 534	13.5	X01-04	0.39	7 1.41	0.112	521	1.531
M01-05	11.1	1.13 0.3	43 542	14.9	X01-05	0.28	5 1.17	0.093	532	1.255
M01-06	13.9	0.787 0.3	78 537	16.5	X01-06	0.13	1 1.25	0.097	538	1.294
M01-07	12.9	0.787 0.3	61 545	15.5	X01-07	0.14	2 1.19	0.093	541	1.233
M01-08	11.7	0.769 0.3	27 540	14.2	X01-08	0.14	8 1.13	0.088	532	1.178
M01-09	10.2	0.974 0.3	06 537	13.4	X01-09	0.23	9 1.26	0.103	548	1.335
M01-10	10.8	1.23 0.3	39 536	14.9	X01-10	0.43	9 1.82	0.148	540	1.955
M01-11	12.9	0.941 0.3	64 532	16.2	X01-11	0.39	0 1.46	0.117	533	1.575
M01-12	16.0	0.655 0.4	17 538	18.2	X01-12	0.37	3 1.71	0.136	534	1.825
M01-13	8.88	0.599 0.2	51 542	10.9	X01-13	0.36	4 1.37	0.113	545	1.475
M01-14	13.6	1.06 0.3	96 543	17.1	X02-01	0.21	6 1.40	0.115	556	1.470
M01-15	11.4	0.781 0.3	18 535	14.0	X02-02	0.20	3 1.27	0.102	546	1.332
M01-16	13.0	1.34 0.3	94 533	17.4	X02-03	0.15	3 1.58	0.118	522	1.622
M01-17	10.8	1.37 0.3	52 539	15.3	X02-04	0.12	8 1.49	0.112	525	1.528
M02-01	11.6	0.938 0.3	32 532	14.7	X02-05	0.27	8 1.66	0.132	541	1.745
M02-02	11.8	0.941 0.3	39 533	14.9	X02-06	0.34	2 1.32	0.107	535	1.427
M02-03	12.0	0.932 0.3	38 529	15.0						
M02-04	7.09	1.28 0.2	59 536	11.3						
M02-05	10.9	1.05 0.3	24 532	14.3	Note					
M02-06	10.3	1.12 0.3	20 536	14.0	T1 0 *	C .1		1 7 1 0		
M02-07	9.58	1.50 0.3	31 534	14.5	ThO ₂ *: sur	n of the n	neasure	ed ThO	2 and	
M02-08	9.81	1.59 0.3	43 535	15.1	ThO ₂ equ	ivalent o	f the m	easure	d UO ₂	•
M02-09	8.97	1.36 0.3	05 530	13.5	UO2*: sum	of the me	easured	UO ₂ at	nd UO	2
M02-10	7.31	1.52 0.2	81 535	12.4	equivalei	nt of the r	neasur	ed ThC) ₂ .	
M02-11	8.05	1.46 0.2	90 528	12.9	Age: appar	ent age ca	alculat	ed thro	ugh	
M02-12	7.85	0.776 0.2	36 531	10.4	equation	1 of Suzi	iki and	Adach	11	
M12-13	6.85	0.560 0.2	02 544	8.71	(1991a,b	, 1994), S	uzuki	et al. (1994)	
M02-14	9.36	1.07 0.2	95 537	12.9	and Adac	chi and Si	izuki (1992).		
M02-15	8.11	1.42 0.2	91 532	12.8	r: r1m					
M02-16	9.02	1.45 0.3	13 531	13.8	Analyzed p	osition is	shown	for M	02 and	d
M02-17	8 90	1 44 0 3	10 532	13.7	M11 mor	nazite gra	ins: for	r exam	ple,	
M02-18	11.9	0.904 0.3	33 527	14.8	M02-01 4	4030 mea	ns 40µ	m fron	n right	
M02-19	12.2	0.758 0.3	34 532	14.8	and 30µr	n from to	p.			
M02-20	12.0	0.869 03	43 541	14.9						
M02-21	11.6	1.02 0.3	39 531	15.0						
M02-22	8.84	1.33 0.3	00 533	13.2						
M02-23	11.4	1.03 0.3	37 535	14.8						
M02-24	10.6	1.24 0.3	41 545	14.7						
M02-25	11.3	1.06 0.3	35 530	14.9						

Fig. 2. Plot of PbO vs. ThO₂* for unzoned monazite grains from biotite-sillimanite-cordierite gneiss from Ihosy. Open circle represents data points for grain margins. Error bars in the figure represent 2σ analytical uncertainty, and error quoted in age is of $.2\sigma$

section. Data points (open circle) below the 550 Ma isochron may result from Pb loss.

Figure 3b shows the PbO vs. ThO₂* plots of analytical data of a core-mantle monazite grain (M11). Within this grain UO2 is heterogenoeously distributed with respect to the shape of the cross section, showing a homogeneous concentration (0.320 - 0.384 wt.%) in the core and variable concentrations (0.077 - 0.500 wt.%) in the mantle. The ThO₂ content of the core (8.843 - 11.04 wt.%) is higher than that of the mantle (2.22 - 11.03 wt.% and mostly in the range between 6.5 and 8.5 wt.%). This compositional discontinuity suggests overgrowth of the mantle under a different chemical environment. The CHIME ages are 797 ± 75 Ma for the core and 535 ± 10 Ma for the mantle.

Kyanite- and corundum-bearing cordierite-sillimanite-muscovite-biotite-plagioclase-quartz gneiss from Maevatanana

Most monazite grains from this sample are very small in size, but two grains have a size sufficient for microprobe analyses. Seventeen spots were measured on M01 grain and 25 spots on M02 grain. The ThO₂ and UO₂ distributions are highly variable within individual grains (Table 1), but data points are arrayed linearly on the PbO vs. ThO₂* diagram (Fig. 4a). The best

Fig. 3. Plot of PbO vs. ThO2* for core-mantle monazite grains M02 (a) and M11(b) from biotite-sillimanite-cordierite gneiss from Ihosy. Solid square represent data points for the core and solid circle represent those for the mantle. Data points for grain margin are shown with open circle, and those for the core-mantle boundary with open square and cross. Explanation for errors is the same as Fig. 2.

Fig. 4. Plot of PbO vs. ThO₂* for monazite (a) and that of PbO vs. UO₂* for xenotime (b) from kyanite- and corundum-bearing cordierite-sillimanite-muscovite-biotite gneiss from Maevatanana. Explanation for errors is the same as Fig. 2.

fit regression line yields an age of 534 ± 10 Ma (MSWD=0.09) and an intercept value of 0.0010 ± 0.0062 . Figure 4b shows the PbO vs. UO₂ plots of 19 analytical data for two xenotime grains. All data points are arrayed linearly, and define an isochron of 530 ± 32 Ma (MSWD=0.11) with an intercept value of 0.0019 ± 0.0072 . Despite the detailed microprobe analysis, no age signature older than ca. 530 Ma can be obtained on both the monazite and xenotime grains.

DISCUSSION AND CONCLUSION

The CHIME dating disclosed that the Biotite-sillimanite-cordierite gneiss from Ihosy contains chronologically zoned monazite grains as well as unzoned The core ages are 1640 ± 180 and 795 ± 75 Ma, although the mantles and ones. unzoned grains give unequivocal ages of 527-550 Ma. The zoning pattern coupled with the considerable difference in core age suggests that the older core are of detrital origin, retaining pre-metamorphic information. Inheritance of monazite grains in the upper most amphibolite to granulite facies paragneisses is not uncommon (Parrish, 1990; Suzuki and Adachi, 1994; Suzuki et Thus, we conclude that the biotite-sillimanite-cordierite gneiss at al., 1994). Ihosy formed through the ca. 530 (527-550) Ma single metamorphic event from a post-795±75 Ma sediment. This reinforces the previous age assignment of late Proterozoic (< ca. 720 Ma) sedimentation and ca. 550 Ma metamorphism for the gneisses exposed at Ihosy (Kröner et al., 1996).

The sample of kyanite- and corundum-bearing cordierite-sillimanite-muscovite-biotite gneiss was collected from the metamorphic sequence peripheral to the Maevatanana greenstone belt of possible Archean age. The nature of the boundary between the peripheral rocks and those of the greenstone proper is still unclear because of poor exposure. Thus, some may regard the metamorphic sequence as the basement unit, and others may consider that the metamorphic sequence overlain unconformably the greenstone belt. This rock gives CHIME monazite age of 534±10 Ma and xenotime age of 530±32 Ma. The well-defined isochrons with no indication of older and younger ages (Fig 4a,b) suggest a single-stage crystallization of monazite and xenotime during the kyanite-sillimanite type metamorphism at ca. 530 Ma ago. We, therefore, consider that the paragneisses at Maevatanana represent the northern extension of the ca. 530 Ma metamorphic rocks at Ihosy in the southern sector. Presumably the central NS trending ductile shear zone of Pan-African age is much wider than has been thought (Windley et al., 1994).

The high-grade metamorphism at ca. 530 Ma in Madagascar appears to be essentially synchronous with the granulite facies metamorphism in the south of the so-called Achankovil shear zone in southern India (539 ± 20 Ma, Santosh et al., 1992; 558 ± 11 Ma, Choudhary et al., 1992; 527 ± 10 Ma, Bindu et al., 1996). Bindu et al. (1996) also reported a 640 ± 30 Ma CHIME age for detrital zircon from the cordierite charnockite sample that gives 527 ± 10 Ma CHIME monazite age. This clearly shows that gneisses in southernmost India are not the polymetamorphosed Proterozoic complex; they formed newly in the Cambrian from post-640 Ma protolith. Similar Cambrian high-grade paragneiss derived from post-620-760 Ma sediments occur in the Yamato Mountains and the Sor Rondane Mountains in East Antarctica (Shiraishi et al., 1994; Asami et al., 1997).

It has been known that metamorphic rocks in Sri Lanka bear many similarities with those in southernmost India and East Antarctica (Yoshida et al., 1992; Shiraishi et al., 1994). We, therefore, consider that the Cambrian (ca. 530 Ma) metamorphic rocks in Madagascar, southernmost India, Sri Lanka and East Antarctica constituted a single metamorphic terrain that can linked directly to the collision of East and West Gondwana.

ACKNOWLEDGEMENTS

We acknowledge Prof. M. Adachi of Nagoya University for his enlightening comments. One of us, MI, would like to express his deep gratitude to Dr. R.A. Rambeloson of the University of Antananarivo, Dr. L.D. Ashwal of Rand Afrikaans University, Dr. S. Muhongo of the University of Dar-es-Salaam and Dr. M. Yoshida of Osaka City University for very kind coodination of UNESCO-IUGS-IGCP-348/368 International Joint Field Workshop held in Madagascar in 1997. Journal reviews by Prof. Y. Nakai and an anonymous referee provided a constructive framework which vastly improved the manuscript.

REFERENCES

- Adachi, M. and Suzuki, K. (1992) A preliminary note on the age of detrital monazites and zircons from sandstones in the Upper Triassic Nabae Group, Maizuru terrane. *Mem. Geol. Soc. Japan*, 38, 111-120.
- Asami, M., Suzuki, K. and Adachi, M. (1997) Th, U and Pb analytical data and CHIME dating of monazites from metamorphic rocks of the Rayner, Luzow-Holm, Yamato-Belgica and Sor Rondane complexes, East Antarctica. Proc. NIPR Symp. Antarct. Geosci., 10, 130-152.
- Bindu, R.S.I., Suzuki, K., Yoshida, M. and Santosh, M. (1996) Pan-African tectonothermal events in East Gondwana land: Evidence from south Indian granulite using CHIME age dating. *Abst. 16th Symp. Antarct. Geosci. NIPR, Japan*, 66-67.
- Choudhary, A., Harris, K., Van Calsteren, P., and Hawkesworth, C.J. (1992) Pan-African charnockite formation in Kerala, South India. *Geol. Mag.*, **129**, 257-264.
- Kröner, A., Braun, I. and Jaeckel, P. (1996): Zircon geochronology of anatectic melts and residues from a high-grade pelitic assemblage at Ihosy, southern Madagascar: evidence for Pan-African granulite metamorphism. *Geol. Mag.*, **133**, 311-323.
- Parrish, R.R. (1990) U-Pb dating of monazite and its application to geological problems. *Can. J. Earth Sci.*, **27**, 1431-1450.
- Santosh, M., Kagami, H., Yoshida, M and Nanda-Kumar, V. (1992) Pan-African charnockite formation in East Gondwana: geochronologoc (Sm-Nd and Rb-Sr) and petrogenetic constraints. *Bull. Indian Geol. Assoc.*, 25, 1-10.
- Shiraishi, K., Ellis, D.J., Hiroi, Y., Fanning, C.M., Motoyoshi, Y. and Nakai, Y. (1994) Cambrian orogenic belt in East Antarctica and Sri Lanka: omprications for Gondwana assembly. J. Geol., 102, 47-65.

- Suzuki, K. and Adachi, M. (1991a) Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami Terrane, Northeast Japan, revealed by the chemical Th-U-totak Pb isochron ages of monazite, zircon and xenotime. *Geochemical J.*, **25**, 357-376.
- Suzuki, K. and Adachi, M. (1991b) The chemical Th-U-totak Pb isochron ages of zircon and monazite from the Gray Granite of the Hida terrane, Japan. J. Earth Sci., Nagoya Univ., **38**, 11-37.
- Suzuki, K. and Adachi, M. (1994) Middle Precambrian detrital monazite and zircon from the Hida gneiss on Oki-Dogo Island, Japan: their origin and implication for the correlation of the basement gneiss of Southwest Japan and Korea. *Tectonophysics*, 235, 277-292.
- Suzuki, K., Adachi, M and Kajizuka, I. (1994) Electron microprobe observations of Pb diffusion in metamorphosed detrital monazites. *Earth Planet. Sci. Lett.* **128**, 391-405.
- Windley, B.F., Razafiniparany, A., Razakamanana, T. and Ackermand, D. (1994): Tectonic framework of the Precambrian of Madagascar and its Gondwana connections: a review and reappraisal. *Geol. Rundsch.* **83**, 642-659.
- Yoshida, M., Funaki, M. and Viyanaga, P.W. (1992) Proterozoic to Mesozoic East Gondwana: the juxtaposition of India-Sri Lanka and Antarctica. *Tectonics*, **11**, 381-391.