EPMA Bibliography

HOME > 研究内容 > CHIME年代測定法 > EPMA Bibliography

March 6, 2007.

[A]

  • Acosta, E., Llovet, X., Coleoni, E., Riveros, J.A. & Salvat, F. (1998)
    Monte Carlo simulation of x-ray emission by kilovolt electron bonbardment. Journal of Applied Physics, 83, 6038 - 6049.
  • Ahlen, S.P. (1980)
    Theoretical and experimental aspects of the energy loss of relativistic heavily ionizing particles. Review of Modern Physics, 52, 121 - 173.
  • Albee, A.L. & Chodos, A. (1970)
    Semiquantitative electron microprobe determination of Fe2+/Fe3+ and Mn2+/Mn3+ in oxides and silicates and its application to petrologic problems. American Mineralogist, 55, 491 - 501
  • Albee, A.L. & Ray, L. (1970)
    Correction factors for electron probe microanalysis of silicates, oxides, carbonates, phosphates, and sulfates. Analytical Chemistry, 42, 1408 - 1414.
  • Åmli, R. & Griffin, W.L. (1975)
    Microprobe analysis of REE minerals using empirical correction factors. American Mineralogist, 60, 599 - 606.
  • Armstrong, J.T. (1984)
    Quantitative analysis of silicate and oxide minerals: a reevaluation of ZAF corrections and proposal for new Bence-Albee coefficients. In: Microbeam Analysis - 1984, Roming Jr, A.D. & Goldstein, J.I. (eds), San Francisco Press, San Francisco, 208 - 212.
  • Armstrong, J.T. (1988)
    Quantitative analysis of silicate and oxide materials: comparison of Monte Carlo, ZAF and φ(ρz) procedures. In: Microbeam Analysis - 1988, Newbury, D.E. ed, San Francisco Press, San Francisco, 239 - 246.
  • Armstrong, J.T. (1988)
    Bence-Albee 20 years: review of the accuracy of α-factor correction procedures for oxide and slicate minerals. In: Microbeam Analysis - 1988, Newbury, D.E. ed, San Francisco Press, San Francisco, 469 - 476.
  • Armstrong, J.T. (1991)
    Quantitative elemental analysis of individual microparticles with electron beam instruments. In: Electron Probe Quantitation, Heinrich, K.F.J. & Newbury, D.E. (eds), Plenum Press, New York, 261 - 315.
  • Armstrong, J.T. (1995)
    CITZAF: a package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Analysis, 4, 177 - 200.
  • Arnould, O. & Hild, F. (2003)
    Specific effects and deconvolution in submicrometre EPMA: application to binary diffusion. X-Ray Spectrometry, 32, 345 - 362.

ページトップへ▲

[B]

  • Bastin, G.F., Dijkstra, J.M. & Heijligers, H.J.M. (1998)
    PROZA96: an improved matrix correction program for electron probe microanalysis, based on double gaussian φ(ρz) approach. X-ray Spectrometry, 27, 3 - 10.
  • Bastin, G.F., Dijkstra, J.M. & Heijligers, H.J.M. (2001)
    An experimental approach to the determination of the surface ionization φ(0) in electron probe microanalysis. X-ray Spectrometry, 30, 216 - 229.
  • Bastin, G.F., Dijkstra, J.M. & Heijligers, H.J.M. (2003)
    Experimental determination of the surface ionisation in electron probe microanalysis. Materials Chemistry and Physics, 81, 219 - 223.
  • Bastin, G.F. & Heijligers, H.J.M. (1991)
    Quantitative electron probe microanalysis of ultra-light elements (boron-oxygen). In: Electron Probe Quantitation, Heinrich, K.F.J. & Newbury, D.E. (eds), Plenum Press, New York, 145 - 161.
  • Bastin, G.F. & Heijligers, H.J.M. (1992)
    Quantitative EPMA of the ultra-light elements boron through oxygen. Mikrochimica Acta Supplementun, 12, 19 - 36.
  • Bastin, G.F. & Heijligers, H.J.M. (2000)
    A systematic database of thin-film measurements by EPMA. Part I - Aluminum films. X-ray Spectrometry, 29, 212 - 238.
  • Bastin, G.F. & Heijligers, H.J.M. (2000)
    A systematic database of thin-film measurements by EPMA. Part II - Palladium films. X-ray Spectrometry, 29, 373 - 397.
  • Bastin, G.F. & Heijligers, H.J.M. (2000)
    Quantitative electron probe microanalysis of boron. Journal of Solid State Chemistry, 154, 177 - 287.
  • Bastin, G.F. & Heijligers, H.J.M. (2004)
    Quantitative electron probe microanalysis of nonconducting specimens: science or art? Microscopy & Microanalysis, 10, 733 - 738.
  • Bastin, G.F., Heijligers, H.J.M. & van Loo, F.J.J. (1986)
    The performance of the modified Φ(ρz) approach as compared to the Love and Scott, Ruste and Standard ZAF correction procedures in quantitative electron probe microanalysis. Scanning, 6, 58 - 68.
  • Bastin, G.F., Heijligers, H.J.M. & van Loo, F.J.J. (1986)
    A further improvement in the gaussian Φ(ρz) approach for matrix correction in quantitative electron probe microanalysis. Scanning, 8, 45 - 67.
  • Bastin, G.F., Oberndorff, P.J.T.L., Dijkstra, J.M. & Heijligers, H.J.M. (2001)
    Extension of PROZA96 to conditions of non-perpendicular incidence of the electron beam. X-ray Spectrometry, 30, 382 - 387.
  • Bastin, G.F., van Loo, F.J.J. & Heijligers, H.J.M. (1984)
    Evaluation of the use of gaussian φ(ρz) curves in quantitative electron probe microanalysis: a new optimization. X-ray Spectrometry, 13, 91 - 97.
  • Bastin, G.F., van Loo, F.J.J., Vosters, P.J.C. & Vrolijk, J.W.G.A. (1984)
    A correction procedure for characteristic fluorescence in microprobe analysis near phase boundaries. Proceedings of the 10th International Congress of X-ray Optics and Microanalysis, Journal de Physique Colloque, C2, 45, 43 - 46.
  • Beaman, D.R., Isasi, J.A., Birnbaum, H.K. & Lewis, R. (1972)
    The source and nature of deadtime in x ray counting systems used in electron microprobe analysis. Journal of Physics E, 5, 767 - 776.
  • Bence, A.E. & Albee, A.L. (1968)
    Empirical correction factors for the electron microanalysis of silicates and oxides. Journal of Geology, 76, 382 - 403.
  • Bender, S.L. & Rapperport, E.J. (1966)
    Nonproportional behavior of the flow proportional counter. In: McKinley T.D., Heinrich, K.F.J. & Wittry, D.B. (eds), The Electron Microprobe, John Wiley and Sons, New York, Lonadon and Sydney, pp. 405 - 414.
  • Berger, M.J. & Seltzer, S.M. (1964)
    Tables of energy losses and ranges of electrons and positrons. NASA SP-3012, National Aeronautics and Space Administration, Washington D.C., pp. 127.
  • Berner, A. & Proaktor, G. (1994)
    Quantitative EPMA of element depth distribution. Mikrochimica Acta, 114/115, 195 - 203.
  • Bethe, H. (1930)
    Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie (The theory of the passage of fast corpuscular rays through the matter). Annalen der Physik, 5, 325 - 400 (in German).
  • Bethe, H.A. (1953)
    Molière's theory of multiple scattering. Physical Review, 89, 1256 - 1266.
  • Bethe, H.A. & Ashkin, J. (1953)
    Passage of radiation through matter. In: Segrè, E. (ed.), Experimental Nuclear Physics, 1, Wiley, New York, pp. 166 - 357.
  • Bishop, H.E. (1974)
    The prospects for an improved absorption correction in electron probe microanalysis. Journal of Physics D, 7, 2009 - 2020.
  • Bonetto, R., Castellano, G. & Trincavelli, J. (2001)
    Optimization of parameters in electron probe microanalysis. X-ray Spectrometry, 30, 313 - 319.
  • Borovskii, I.B., Kozlenkov, A.I. & Bolochova, T.A. (1984)
    Evaluation of correction procedures for quantitative light element EPMA. Proceedings of the 10th International Congress of X-ray Optics and Microanalysis, Journal de Physique Colloque, C2, 45, 9 - 12.
  • Brown, J.D. & Packwood, R.H. (1982)
    Quantitative electron probe microanalysis using gaussian φ(ρz) curves. X-ray Spectrometry, 11, 187 - 193.
  • Browning, R. (1991)
    Universal elastic scattering cross sections for electrons in the range 1-100 keV. Applied Physics Letters, 58, 2845 - 2847.
  • Browning, R., Li, T.Z., Chui, B., Ye, J., Pease, R.F.W, Czyżewski, Z. & Joy, D.C. (1994)
    Empirical forms for the electron/atom elastic scattering cross sections from 0.1 to 30 keV. Journal of Applied Physics, 76, 2016 - 2022.

ページトップへ▲

[C]

  • Carpenter, P., Counce, D., Kluk, E. & Nabelek, C. (2002)
    Characterization of corning EPMA standard glasses 95IRV, 95IRW, and 95IRX. Journal of Research of the National Institute of Standards and Technology, 107, 703 - 718.
  • Castaing, R. (1951)
    Application des sondes électroniques à une méthode d'analyse ponctuelle chimique et cristallographique. Ph. D. Thesis, Université de Paris.
  • Cho, D.L., Kato, T. & Suzuki, K. (2006)
    A working standard technique for determination of interference correction factors and preparation of standard materials for CHIME dating. Journal of Korean Earth Science Society, 27, 521 - 527 (in Korean with English abstract).
  • Cocherie, A. & Albarede, F. (2000)
    An improved U-Th-Pb age calculation for electron microprobe dating of monazite. Geochimica Cosmochimica Acta, 65, 4509 - 4522.
  • Czyżewski, Z., MacCalium, D.O., Roming, A. & Joy, D.C. (1990)
    Calculation of Mott scattering cross section. Journal of Applied Physics, 68, 3066 - 3072.

ページトップへ▲

[D]

  • den Boggende, A.J.F., Brinkman, A.C. & de Graalf, W. (1969)
    Comments on the ageing effect of gas-filled proportional counters. Journal of Scientific Instruments (Journal of Physics E), 2, 702 - 705.
  • Ding, Z.-J. & Shimizu, R. (1988)
    Monte Carlo study of backscattering and secondary electron generation. Surface Science, 197, 539 - 554.
  • Ding, Z.-J. & Shimizu, R. (1989)
    Inelastic collisions of kV electrons in solids. Surface Science, 222, 313 - 331.
  • Donovan, J.J., Hanchar, J.M., Picolli, P.M., Schrier, M.D., Boatner, L.A. & Jarosewich, E. (2002)
    Contamination in the rare-earth element orthophosphate reference samples. Journal of Research of the National Institute of Standards and Technology, 107, 693 - 701.
  • Donovan, J.J., Snyder, D.A. & Rivers, M.L. (1993)
    An improved interference correction for trace element analysis. Microbeam Analysis, 2, 23 - 28.
  • Duncumb, P. (1994)
    Correction procedures in electron probe microanalysis of bulk smaples. Mikrochimica Acta, 114/115, 3 - 20.
  • Duncumb, P. & Reed, S.J.B. (1968)
    The calculation of stopping power and backscatter effects in electron probe microanalysis. In: Heinrich, K.F.J. (ed.), Quantitative Electron Probe Microanalysis, NBS Special Publication 298, U.S. Government Printing Office, Washington D.C., pp. 138 - 154.
  • Duncumb, P., Shields-Mason, P.K. & da Casa, C. (1969)
    Accuracy of atomic number and absorption corrections in electron probe microanalysis. Proceedings of Fifth International Congress on X-ray Optics and Microanalysis, Springer Valag, Berlin, 146 - 150.

ページトップへ▲

[E]

  • Exley, R.A. (1980)
    Microprobe studies of REE-rich accessory minerals: implications for skye granite petrogenesis and REE mobility in hydrothermal systems. Earth and Planetary Science Letters, 48, 97 - 110.

ページトップへ▲

[F]

  • Farthing, I., Love, G., Scott, V.D. & Walker, C.T. (1992)
    A modular universal correction procedure for quantitative EPMA. Mikrochimica Acta Supplementum, 12, 117 - 124.
  • Fournier, C., Merlet, C., Staub, P.F. & Dugne, O. (2000)
    An expert system for EPMA. Mikrochimica Acta, 132, 531 - 539.

ページトップへ▲

[G]

  • Gauvin, R., Lifshin, E., Demers, H., Horny, P. & Campbell, H. (2006)
    Win X-ray: A new Monte Carlo program that computes X-ray spectra obtained with a scanning electron microprobe. Microscopy and Microanalysis, 12, 49 - 64.
  • Gedeon, O. & Jurek, K. (2002)
    Decay curve analysis of alkali-silicate glass exposed to electrons. Mikrochimica Acta, 139, 67 - 70.
  • Geller, J.D. & Herrington, C. (2002)
    High count rate electron probe microanalysis. Journal of Research of the National Institute of Standard and Technology, 107, 503 - 508.
  • Greaves, C. (1970)
    Film thickness measurement by monitoring methods. Vacuum, 20, 332 - 340.
  • Gryziński, M. (1965)
    Two-particle collisions. I. General relations for collisions in the laboratory system. Physical Review, 138, A305 - A321.
  • Gryziński, M. (1965)
    Two-particle collisions. II. Coulomb collisions in the laboratory system of coordinates. Physical Review, 138, A322 - A335.

ページトップへ▲

[H]

  • Heinrich, K.F.J. (1987)
    Mass absorption coefficients for electron probe microanalysis. In: Proceedings of the 11th International Congress of X-ray Optics and Microanalysis, Brown, J.D. & Packwood, R.H. (eds), University of Western Ontario Press, London, Ontario, 67 - 119.
  • Heinrich, K.F.J., Vieth, D. & Yakowitz, H. (1966)
    Correction for non-linearity of proportional counter systems in electron probe X-ray microanalysis. In: Mallett, G.R., Fay, M. & Mueller, W.M. (eds), Advances in X-ray Analysis, 9, Plenum Press, New York, pp. 208 - 220.
  • Heluani, S.P. (2005)
    Invariant embedding approach for electron probe microanalysis. Tilt factor, atomic number and energy of the incident electrons. X-Ray Spectrometry, 34, 230 - 234.
  • Hendricks, R.W. (1969)
    Space charge effects in proportional counters. Review of Scientific Instruments, 40, 1216 - 1223.
  • Henke, B.L. & Ebisu, E.S. (1974)
    Low energy X-ray and electron absorption within solids (100 - 1500 eV region). In: Advances in X-ray Analysis, 17, Grant, C.L., Barrett, C.S., Newkirk, J.B. & Ruud, C.O. (eds), Plenum Press, New York, 150 - 213.
  • Henke, B.L., Gullikson, E.M. & Davis, J.C. (1993)
    X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92. Atomic Data and Nuclear Data Tables, 54, 181 - 342.
  • Henke, B.L., Lee, P., Tanaka, T.J., Shimabukuro, R.I. & Fujikawa, B.K. (1982)
    Low energy X-ray interaction coefficients: photoabsorption, scattering and reflection. Atomic Data and Nuclear Data Tables, 27, 1 - 144.
  • Horiguchi, S., Suzuki, M., Kobayashi, T., Yoshino, H. & Sakakibara, Y. (1981)
    New model of electron free path in multiple layers for Monte Carlo simulations. Applied Physics Letters, 39, 512 - 514.
  • Hunt, J.B., Clift, P.D., Lacasse, C., Vallier, T.L. & Werner, R.
    Interlaboratory Comparison of Electron Probe Microanalysis of Glass Geochemistry. Proceedings of the Ocean Drilling Program, Scientific Results, 152, 85 - 91.

ページトップへ▲

[J]

  • Joy, D.C. (1992)
    Electron specimen interactions. In: Fitzgerald, A.G., Storey, B.E. & Fabian, D. (eds.), Quantitative Microbeam Analysis, Scottish Universities Summer School in Physics and Institute of Physics Publishing, Bristol and Philadelphia, pp. 213 - 245.
  • Joy, D.C. (1998)
    The efficiency of X-ray production at low energies. Journal of Microscopy, 191, 74 - 82.
  • Joy, D.C. & Luo, S. (1989)
    An empirical stopping power relationship for low-energy electrons. Scanning, 11, 176 - 180.
  • Jurek, K., Renner, O. & Krouský, E. (1994)
    The role of coating densities in X-ray microanalysis. Mikrochimica Acta, 114/115, 323 - 326.

ページトップへ▲

[K]

  • Kanaya, K. & Okayama, S. (1972)
    Pnetration and energy-loss theory of electrons in solid targets. Journal of Phisics D, 5, 43 - 58.
  • Kato, T. (1999)
    Fe2+/Fe3+ mapping with an electron probe microanalyzer (EPMA). Journal of Geography (Chigaku Zasshi), 108, 122 - 131. (in Japanese with English abstract) [PDF (J-STAGE)]
  • Kato, T. (2005)
    New accurate Bence-Albee α-factors for oxides and silicates calculated from the PAP correction procedure. Geostandards and Geoanalytical Research, 29, 83 - 94. [doi:10.1111/j.1751-908X.2005.tb00657.x]
  • Kato, T. (2007)
    Monte Carlo study of quantitative electron probe microanalysis of monazite with a coating film: Comparison of 25 nm carbon and 10 nm gold at E0 = 15 and 25 keV. Geostandards and Geoanalytical Research, 31, 89 - 94. [doi:10.1111/j.1751-908X.2007.00852.x]
  • Kato, T., Cho, D.-L. & Suzuki, K. (2005) [Download] (457KB)
    Determination of interference corretion factors and preparation of standard materials using “working standard” technique for CHIME dating. Bulletin of the Nagoya University Museum, 21, 43 - 49 (in Japanese with English abstract).
  • Kato, T. and Suzuki, K. (2014)
    ‘Background holes’ in X-ray spectrometry using a pentaerythritol (PET) analyzing crystal. Journal of Mineralogical and Petrological Sciences, 109, 151 - 155. [doi:10.2465/jmps.131010]
  • Kato, T., Suzuki, K. & Adachi, M. (1999) [Download] (188KB)
    Computer program for the CHIME age calculation. Journal of Earth and Planetary Sciences, Nagoya University, 46, 49 - 56.
  • Kotera, M., Murata, K. & Nagami, K. (1981)
    Monte Carlo simulation of 1-10-keV electron scattering in a gold target. Journal of Applied Physics, 52, 997 - 1003.
  • Kotera, M., Murata, K. & Nagami, K. (1981)
    Monte Carlo simulation of 1-10-keV electron scattering in an aluminum target. Journal of Applied Physics, 52, 7403 - 7408.
  • Kyser, D.F. & Murata, K. (1974)
    Quantitative electron microprobe analysis of thin films on substrates. IBM Journal of Research and Development, 18, 352 - 363.

ページトップへ▲

[L]

  • Lawson, W.H. (1967)
    A versatile thin film thickness monitor of high accuracy. Journal of Scientific Instruments, 44, 917 - 921.
  • Lijequist, D., Ismail, M., Salvat, F., Mayol, R. & Martinez, J.D. (1990)
    Transport mean free path tabulated for the multiple elastic scattering of electrons and positrons at energies ≤ 20 MeV. Journal of Applied Physics, 68, 3061 - 3065.
  • Lins, S.J. & Kukuk, H.S. (1960)
    Resonance frequency shift thin-film thickness monitor. In: Meissner, C.R. (ed), 1960 Seventh National Symposium on Vacuum Technology Transactions, Pergamon Press, Oxford, London, New York and Paris, pp. 333 - 338.
  • Love, G., Cox, M.G. & Scott, V.D. (1977)
    A simple Monte Carlo method for simulating electron - solid interactions and its application to electron probe microanalysis. Journal of Physics D, 10, 7 - 23.
  • Love, G., Cox, M.G. & Scott, V.D. (1978)
    A versatile atomic number correction for electron-probe microanalysis. Journal of Physics D, 11, 7 - 21.
  • Love, G., Cox, M.G. & Scott, V.D. (1978)
    The surface ionisation function φ(0) derived using a Monte Carlo method. Journal of Physics D, 11, 23 - 31.
  • Love, G., Sewell, D.A. & Scott, V.D. (1984)
    An improved absorption correction for quantitative analysis. Proceedings of the 10th International Congress of X-ray Optics and Microanalysis, Journal de Physique Colloque, C2, 45, 21 - 24.

ページトップへ▲

[M]

  • Marinenko, R. & Leigh, S. (2004)
    Heterogeneity evaluation of research materials for microanalysis standards certification. Microscopy and Microanalysis, 10, 491 - 506.
  • McGuire, E.J. (1977)
    Electron ionization cross sections in the Born approximation. Physical Review A, 16, 62 - 72.
  • McGuire, E.J. (1977)
    Scaled electron ionization cross sections in the Born approximation. Physical Review A, 16, 73 - 79.
  • Merlet, C. (1992)
    Accurate description of surface ionization in electron probe microanalysis: an improved formulation. X-ray Spectrometry, 21, 229 - 238.
  • Merlet, C. (1992)
    Quantitative electron probe microanalysis: new accurate Φ(ρz) description. Mikrochimica Acta Supplementum, 12, 107 - 115.
  • Merlet, C. (1994)
    An accurate computer correction program for quantitative electron probe microanalysis. Mikrochimica Acta, 114/115, 363 - 376.
  • Merlet, C. (1995)
    Maximum of the X-ray depth distribution in EPMA at normal incidence: an analytical expression. Microbeam Analysis, 4, 239 - 253.
  • Morel, S., Lubet, T., Pouchou, J.L. & Olive, J.M. (2004)
    Roughness Analysis of the Cracked Surfaces of a Face Centered Cubic Alloy. Physical Review Letters, 93, 065504-1 - 065504-4.
  • Mott, N.F. (1929)
    Scattering of fast electrons by atomic nuclei. Proceedings of the Royal Society (London), A124, 425 - 442.
  • Murata, K. (1974)
    Spatial distribution of backscattered electrons inthe scanning electron microscope and electron microprobe. Jouranl of Applied Physics, 45, 4110 - 4117.
  • Murata, K., Cvikevich, S. & Kuptsis, J.D. (1984)
    A Monte Carlo simulation approach to thin film electron microprobe analysis based on the use of Mott scattering cross-sections. Proceedings of the 10th International Congress of X-ray Optics and Microanalysis, Journal de Physique Colloque, C2, 45, 13 - 16.
  • Murata, K., Kotera, M. & Nagami, K. (1983)
    Quantitative electron microprobe analysis of thin films on substrates with a new Monte Carlo simulation. Journal of Applied Physics, 54, 1110 - 1114.
  • Murata, K., Kyser, D.F. & Ting, C.H. (1984)
    Monte Carlo simulation of fast secondary electron production in electron beam resists. Journal of Applied Physics, 52, 4396 - 4405.
  • Murata, K., Matsukawa, T. & Shimizu, R. (1971)
    Monte Carlo calculations on electron scattering in a solid target. Japanese Journal of Applied Physics, 10, 678 - 685.

ページトップへ▲

[N]

  • Nakamura, Y. & Kushior, I. (1970)
    Compositional relations of coexisting orthopyroxene, pigeonite and augite in a tholeiitic andesite from Hakone volcano. Contributions to Mineralogy and Petrology, 26, 265 - 275.
  • Nielsen, C.H. & Sigurdsson, H. (1981)
    Quantitative methods for electron microprobe analysis of sodium in natural and synthetic glasses. American Mineralogist, 66, 547 - 552.

ページトップへ▲

[O]

  • Obori, K., Shimuzu, R., Oura, T. & Ichimura, S. (1983)
    Quantitative microanalysis of individual particles. I. Electron probe microanalysis of NBS-glass particulates. Journal of Applied Physiscs, 54, 150 - 154.
  • Osada, Y. (2004)
    EPMA mapping method for small particles of Al3Fe, Al6Fe, α-AlFeSi and β-AlFeSi in 1050-H18 aluminum sheets. X-ray Spectrometry, 33, 321 - 325.
  • Osada, Y. (2005)
    Monte Carlo study of quantitative EPMA analysis of a non-conducting sample with a coating film. X-Ray Spectrometry, 34, 96 - 100.

ページトップへ▲

[P]

  • Packwood, R. (1991)
    A comprehensive theory of electron probe microanalysis. In: Electron Probe Quantitation, Heinrich, K.F.J. and Newbury, D.E. (eds), Plenum Press, New York, 83 - 104.
  • Packwood, R.H. & Brown, J.D. (1981)
    A gaussian expresson to describe φ(ρz) curves for quantitative electron probe microanalysis. X-ray Spectrometry, 10, 138 - 146.
  • Philibert, J. (1963)
    A method for calculating the absorption corrections in electron probe microanalysis. In: Cosslett, V.E. & Engstrom, A. (eds.), X-ray Optics and X-ray Microanalysis, Academic Press, New York, pp. 379 - 392.
  • Philibert, J. & Tixier, R. (1968)
    Electron penetration and the atomic number correction in electron probe microanalysis. British Journal of Applied Physics, 1, 685 - 694.
  • Pouchou, J.L. & Pichoir, F. (1984)
    Extension des possibilités quantitatives de la microanalyse par une formulation nouvelle des effets de matrice. Proceedings of the 10th International Congress of X-ray Optics and Microanalysis, Journal de Physique Colloque, C2, 45, 17 - 20.
  • Pouchou, J.L. & Pichoir, F. (1984)
    Analyse d'échantillons stratifiés à la microsonde électronique. Proceedings of the 10th International Congress of X-ray Optics and Microanalysis, Journal de Physique Colloque, C2, 45, 47 - 50.
  • Pouchou, J.L. & Pichoir, F. (1984)
    A new model for quantitative X-ray-microanalysis. 1. Application to the analysis of homogeneous samples. La Recherche Aérospatiale, 1984-3, 167 - 192.
  • Pouchou, J.L. & Pichoir, F. (1984)
    A new model for quantitative X-ray-microanalysis. 2. Application to in-depth analysis of heterogeneous samples. La Recherche Aérospatiale, 1984-5, 349 - 367.
  • Pouchou, J.L. & Pichoir, F. (1988)
    Determination of mass absorption coefficients for soft X-rays by use of the electron microprobe. In: Microbeam Analysis - 1988, Newbury, D.E. (ed), 319 -324, San Francisco Press, San Francisco, 319 - 324.
  • Pouchou, J.L. & Pichoir, F. (1991)
    Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In: Electron Probe Quantitation, Heinrich, K.F.J. & Newbury, D.E. (eds), Plenum Press, New York, 31 - 75.
  • Powell, C.J. (1976)
    Cross sections for ionization of inner-shell electrons by electrons. Reviews of Modern Physics, 48, 33 - 47.
  • Pratt, R.H., Tseng, H.K., Lee, C.M. & Kissel, L. (1977)
    Bremsstrahlung energy spectra from electrons of kinetic energy 1 keV ≤ T1 ≤ 2000 keV incident on neutral atoms 2 ≤ Z &le 92. Atomic Data and Nuclear Data Tables, 20, 175 - 209.
  • Procop, M. (2004)
    Measurement of X-ray emission efficiency for K-lines. Microscopy and Microanalysis, 10, 481 - 490.

ページトップへ▲

[R]

  • Rao-Sahib, T.S. & Wittry, D.B. (1974)
    X-ray continuum from thick elemental targets for 10-50-keV. Journal of Applied Physics, 45, 5060 - 5068.
  • Reed, S.J.B. (1965)
    Characteristic fluorescence correction in electron-probe microanalysis. British Journal of Applied Physics, 16, 913 - 926.
  • Reed, S.J.B. (1990)
    Fluorescence effects in quantitative microprobe analysis. In: Microbeam Analysis - 1990, Williams, D.B., Ingram, P. & Michael, J.R. (eds), San Francisco Press, San Francisco, 109 - 114.
  • Rémond, G., Nockolds, C., Phillips, M. & Roques-Carmes, C. (2002)
    Implications of polishing techniques in quantitative X-ray microanalysis. Journal of Research of the National Institute of Standard and Technology, 107, 639 - 662.
  • Rez, P. (2002)
    Accurate cross sections for microanalysis. Journal of Research of the National Institute of Standards and Technology, 107, 487 - 495.
  • Rhede, D., Wendt, I. and Förster, H.J. (1996)
    A three-dimensional method for calculating independent chemical U/Pb- and Th/Pb-ages of accessory minerals. Chemical Geology, 130, 247 - 253.
  • Riveros, J. & Castellano, G. (1993)
    Review of φ(ρz) curves in electron probe microanalysis. X-ray spectrometry, 23, 3 - 10.
  • Riveros, J., Castellano, G.E. & Trincavelli, J.C. (1992)
    Comparison of Φ(ρz) curve models in EPMA. Mikrochimica Acta Supplementum, 12, 99 - 105.
  • Roeder, P.L. (1985)
    Electron-microprobe analysis of minerals for rare-earth elements: use of calculated peak-overlap corrections. Canadian Mineralogist, 23, 263 - 271.
  • Ruark, A.E. & Brammer, F.E. (1937)
    The efficiency of counters and counter circuits. Physical Review, 52, 322 - 324.
  • Rule, D.W. (1977)
    Total Born-approximation cross sections for single-electron loss by atoms and ions cooliding with atoms. Physical Review A, 16, 19 - 25.
  • Ruste, J. (1979)
    Main priciples of quantitative microanalysis applied to very light-elements. Journal de Microscopie et de Spectroscopie Électroniques, 4, 123 - 136.
  • Ruste, J. & Gantois, M. (1975)
    A quantitative analysis of very light elements by the electron probe microanalyser. Journal of Physics D, 8, 872 - 890.

ページトップへ▲

[S]

  • Scott, V.D. & Love, G. (1991)
    An EPMA correction method based upon a quadrilateral φ(ρz) profile. In: Electron Probe Quantitation, Heinrich, K.F.J. & Newbury, D.E. (eds), Plenum Press, New York, 19 - 30.
  • Seiler, H. (1983)
    Secondary electron emission in the scanning electron microscope. Journal of Applied Physics, 54, R1 - R18.
  • Seltzer, S.M. & Berger, M.J. (1986)
    Bremsstrahlung energy spectra from electrons with kinetic energy 1 keV - 10 GeV incident on screened nuclei and orbital electrons of neutral atoms with Z = 1-100. Atomic Data and Nuclear Data Tables, 35, 345 - 418.
  • Sewell, D.A., Hall, I.D., Love, G., Partridge, J.P. & Scott, V.D. (1984)
    X-ray studies related to coating thickness measurements. Proceedings of the 10th International Congress of X-ray Optics and Microanalysis, Journal de Physique Colloque, C2, 45, 33 - 36.
  • Sewell, D.A., Love, G. & Scott, V.D. (1985)
    Universal correction procedure for electron-probe microanalysis: I. Measurement of x-ray depth distribution in solids. Journal of Physics D, 18, 1233-1243.
  • Sewell, D.A., Love, G. & Scott, V.D. (1985)
    Universal correction procedure for electron-probe microanalysis: II. The absorption correction. Journal of Physics D, 18, 1245-1268.
  • Sewell, D.A., Love, G. & Scott, V.D. (1985)
    Universal correction procedure for electron-probe microanalysis: Iii. Comparison with other recent correction procedures. Journal of Physics D, 18, 1269-1280.
  • Shaw, H.F. & Albee, A.L. (1979)
    An empirical investigation into possible nonlinearities of the microprobe correction factors in the system MgO-CaO-Al2O3-SiO2. In: Microbeam Analysis - 1979, Newbury, D.E. (ed), San Francisco Press, San Francisco, 227 - 230.
  • Shimizu, R. and Ding, Z.J. (1992)
    Monte Carlo modelling of electron-solid interactions. Reports on Progress in Physics, 55, 487 - 531.
  • Shrivastava, B.D. & Shrivastava, U. (2005)
    2p3/2-13x-1-3x-13d3/2-1 x-ray satellites in the Lα2 region. X-Ray Spectrometry, 34, 179 - 182.
  • Smellie, J.A.T., Cogger, N. & Herrington, J. (1978)
    Standards for quantitative microprobe determination of uranium and thrium with additional information on the chemical formulae of davidite and euxenite-polycrase. Chemical Geology, 22, 1 - 10.
  • Spielberg, N. & Tsamas, D.I. (1975)
    Counting rate dependent gain shift in flow proportional counters. Review of Scientific Instruments, 46, 1086 - 1091.
  • Suzuki, K. & Adachi, M. (1991)
    Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime. Geochemical Journal, 25, 357 - 376.
  • Suzuki, K. & Adachi, M. (1991) [Download] (2110KB)
    The chemical Th-U-total Pb isochron ages of zircon and monazite from the Gray Granite of the Hida terrane, Japan. Journal of Earth and Planetary Sciences, Nagoya University, 38, 11 - 37.
  • Suzuki, K. & Adachi, M. (1994)
    Middle Precambrian detrital monazite and zircon from the Hida gneiss in the Oki-Dogo Island, Japan: their origin and implication for the corelation to the basement gneiss of Southwest Japan and Korea. Tectonophysics, 235, 277 - 292.
  • Suzuki, K. & Adachi, M. (1998)
    Denudation history of the high T/P Ryoke metamorphic belt, Southwest Japan: constraints from CHIME monazite ages of gneisses and granitoid. Journal of Metamorphic Geology, 16, 23 - 37.
  • Suzuki, K., Kajizuka, I., Yamamoto, K., Ohashi, M., Sugitani, K. & Yogo, S. (1990) [Download] (451KB)
    New Cu-bearing Glass standards for electron microprobe analysis. Bulletin of the Nagoya University Furukawa Museum, 6, 21 - 28.
  • Suzuki, K. & Kato, T. (2008)
    CHIME dating of monazite, xenotime, zircon and polycrase: protocol, pitfalls and chemical criterion of possibly discrodant age data. Gondwana Research, 14, 569 - 586.

ページトップへ▲

[T]

  • Tanuma, S. & Nagashima, K. (1983)
    Evaluation of an improved absorption correction based on the Gaussian ionization distribution model for quantitative electron probe microanalysis. Mikorchimica Acta, 1983 I (79), 299 - 313.
  • Tanuma, S. & Nagashima, K. (1984)
    A new absorption correction based on a normalized ionization distribution model for electron microprobe analysis and its application for oxygen analysis. Mikrochimica Acta, 1984 III (84), 265 - 274.
  • Tirra Saá, J.H., del Giorgia, M.A. & Riveros, J.A. (1987)
    Assesment of the Gaussian φ(ρz) curves in quantitative electron microanalysis without optimization of the parameters. X-ray Spectrometry, 16, 243 - 248.
  • Trincavelli, J. & Castellano, G. (1999)
    MULTI: an interactive program for quantitation in EPMA. X-ray Spectrometry, 28, 194 - 197.

ページトップへ▲

[W]

  • Worthington, C.R. & Tomlin, S.G. (1956)
    The intensity of emission of characteristic X-radiation. Proceedings of the Physical Society, Section A, 69, 401 - 412.

ページトップへ▲

[Z]

  • Zeller, C. & Ruste, J. (1976)
    Modèle théorique de pénétration des électrons dans la matière. Revue de Physique Appliquée, 11, 441 - 447 (in French with English abstract).

ページトップへ▲