加速器¹⁴C年代測定による野尻湖層の編年 – 野尻湖における火山灰層序および人類考古の研究に関連して

沢田健・公文富士夫・秋山雅彦* 中村俊夫・中井信之・有田陽子** 野尻湖人類考古グル-プ***

*			信州大学理	学部	地質	学教	室					390	松	本	市り	⊞3-	- 1 -	1			
*	*		名古屋大学	年代	測定了	資料	研究	セ	ンタ	_	•	名古屋	大	学	理学	学部	地	球利	1学	教	室
												464-01	名	古	屋ī	市千	種	区イ	、老	町	
*	*	*	野尻湖博物	館	中村日	由克	気付					389-13	8長	野	県亻	言 濃	町	野月	12	87-	5

I はじめに

長野県北部に位置する野尻湖は、標高654.3m、面積4.6km²、最大水深38.5mの山間の 湖である。この湖の西岸に位置する立が鼻遺跡は、最終氷期の動・植物化石と人類の遺 物がともに産出する重要な旧石器時代の遺跡として知られている。立が鼻周辺に分布す る野尻湖層は、砂層やシルト層を主体とし、さらに主として黒姫山・妙高山に起源をも つ約42層の火山灰層が挟在する上部更新統の湖成層である。多くの化石・遺物は、それ らの地層に包含されている。

立が鼻遺跡およびその周辺では、1962年の第1次野尻湖発掘以来、現在までに11回の 湖底発掘と6回の陸上発掘が野尻湖発掘調査団によって行われ、それらの成果が報告さ れてきている(野尻湖地質グループ, 1980;1984;1987;1990,野尻湖発掘調査団, 1990)。

立が鼻周辺の地質層序は、野尻湖発掘調査団の地質グループによって、第8次発掘ま でに確立されている。上部更新統の野尻湖層の編年は、材化石を試料としてβ線計数法 による¹⁴C年代をもとに行われてきた。しかし、それから得られた測定値は、分散が著 しく、野尻湖層の編年としては2通りの可能性が指摘されていた(中村由克・野尻湖発 掘調査団,1990)。

そこで、従来の方法より精度が高く、ミリグラムオーダーの微量の試料で測定可能な 加速器質量分析計を用いて、野尻湖層から発掘されたナウマンゾウ、オオツノシカ、材 についての¹⁴C年代測定を行った。その結果、約23,000y.B.P.より古いものについては、 従来の年代値に比べて約8,000~15,000年ほど古い値を得た。この研究では、それらの加 速器¹⁴C年代にもとづいて野尻湖層の年代を再検討し、野尻湖周辺で行われている火山 灰層序学的および人類考古学的研究との関係についての考察を行う。 Ⅱ 測定試料とその調製

1) 測定試料

立が鼻周辺における野尻湖湖底の堆積物の層序は、図2に示されるように、下位より 上部更新統の貫ノ木層、下部野尻湖層、中部野尻湖層、上部野尻湖層、そして、完新統 のJ列層と現湖底堆積物に区分されている(野尻湖地質グループ,1984:1987;1990)。 測定に使用したナウマンゾウとオオツノシカの化石は下部野尻湖層 II 最下部から上部 野尻湖層 I までの産出試料で、また、材化石は下部野尻湖層 II 最下部から J 列層までの 産出試料である。ナウマンゾウやオオツノシカ化石は、それぞれ切歯・臼歯と掌状角の 象牙質から抽出したコラーゲンを測定試料とした。

2) コラ-ゲンの抽出

産出化石は、保存の過程で腐植質をはじめとする各種の有機物の汚染を受けている可能性がある。したがって、化石からコラーゲンを抽出して測定試料とする際には、コラ ーゲンと汚染有機物(おもに腐植質)を完全に分離できる方法をとらなければならない。 この研究では、コラーゲン抽出を半透膜を用いて脱灰し、さらにゼラチン化させて回収 する方法を用いて行った(図1)。詳細は、沢田ほか(1992)に述べられている。この 方法で、可溶性のものとゼラチン化したものの2種のコラーゲンを得ることができる。 試料が著しく少ない場合以外は、ゼラチン化コラーゲンだけを測定試料とした。

Ⅲ 加速器質量分析計による¹⁴C年代測定法

本研究では、名古屋大学年代測定資料研究センター設置されているタンデトロン加速 器質量分析計を用いて¹⁴C年代測定を行った。求める年代をtとすると、その年代は次 式により求められる。

t = $\frac{1}{\lambda}$ l n $\frac{N}{N}^{\circ}$ = $\frac{T_{1/2}}{0.693}^{2}$ l n $\frac{N}{N}^{\circ}$ T_{1/2}: 半減期 (5570年) λ : 壊変定数 (0.693) N₀: t = 0のときの¹⁴ Cの数 N : 試料中の¹⁴ Cの数

ここで、¹⁴C年代値の算出にあたっては、慣例により¹⁴Cの半減期としてLibbyの半減 期5570年を用いることとした。(中井・中村, 1988;中村・中井, 1988)。 タンデトロンの測定条件と性能、測定方法の詳細は、中井・中村(1988)中村・中井

(1988)の記述と同様であるので、ここでは重複を避けて再述しないこととする。

従来のβ線計数法では、放射壊変の際放出されるβ線を計数して¹⁴C年代を測定する。 この場合、β線は1mgの現代の炭素から1分間に1.34×10⁻²個しか放出されないので、化 石のミリグラムオーダーの試料では計数は不可能である。それに対して¹⁴Cそのものを 計数する加速器質量分析計による測定の場合は、1mgの現代の炭素に含まれる¹⁴Cの原子 数は6×10⁷個であることから、β線測定より著しく能率がよいといえる。すなわち、加 速器質量分析計の試料炭素の必要量は2~5mgときわめて少量で、β線計数法と比較する と、その1,000分の1以下で済むことになる。したがって、これまで不可能とされていた 哺乳類の小さな化石片などについての年代測定も可能になり、測定に要する時間も短縮 されるという利点がある。

また、測定可能年代の限界という面からみると、β線計数法での信頼できる測定年代 が3~4万年前までであるのに対して、加速器質量分析計は¹⁴C計数のバックグラウン ドがきわめて低いため、測定年代は6万年前まで可能である(中村・中井, 1991)。た だし、5万年前を越える測定値については誤差が大きい。 これらのことから、野尻湖層のように2万年より古いと予想される試料を研究対象と する場合には、加速器質量分析計による年代測定が適しているといえる。

Ⅳ 野尻湖層の加速器¹⁴C年代

1) コラ - ゲン含有率および C / N 比

ナウマンゾウ・オオツノシカの化石の象牙質から抽出されたコラ - ゲンの収量をコラ - ゲンの全含有量とし、それを可溶性コラ - ゲン(S)とゼラチン化コラ - ゲン(G) に分けて表1に示した。コラ - ゲン含有率は、試料の保存の程度を示すと考えてよい。 この値と¹⁴C年代値との関係は後述する。

C / N 比は、抽出物のコラ - ゲンとしての純度の指標となる。コラ - ゲンのようにグリシンの含有率の大きなタンパク質では、C / N 比は 3.2±0.5である(Hare and von Endt, 1990)。本研究では、C / N 比がその値に近いものを選び、¹⁴ C 年代の測定試料とし、C / N 比が6.0以上のものは汚染の可能性が大きいと考えて、すべて「測定不能(N, D)」として示した(表1)。

2)¹⁴C年代測定值

加速器質量分析計によるナウマンゾウとオオツノシカの化石のコラーゲンの¹⁴C年代 測定結果を表1に、材化石の測定結果を表2に示した。また、年代値と産出層準の関係 や従来のβ線計数法による測定結果との比較を図2に示した。おもに測定試料としてゼ ラチン化コラーゲンを使用したが、同一の象牙質から抽出された可溶性コラーゲンにつ いてもいくつか測定した。測定した可溶性コラーゲンの¹⁴C年代測定値は、ゼラチン化 コラーゲンの値とよく一致している。

図2からわかるとおり、種・部位によっては、測定結果に多少ばらつきがある。それ らは次の3つのパタ-ンに分けることができる。

- (a)コラ ゲン含有率の大きい(0.7~4.7%)ナウマンゾウの臼歯の象牙質と材化石が示 す年代値
- (b)ナウマンゾウの切歯、オオツノシカの掌状角、コラ ゲン含有率の小さい(0.7%未 満の)ナウマンゾウの臼歯の象牙質が示す若い年代値
- (c)コラ ゲン含有率の大きいナウマンゾウの臼歯のいくつかが示す特に他の値から逸脱 して古い年代値

この3つのグル-プに属する¹⁴C年代値は、(a)が30個、(b)が7個、(c)が5個であり、(b)(a)(c)の順に数千年ずつ古くなる。

この3つのグループの中で野尻湖層の¹⁴C年代として信頼できるのは、(a)の示す値で あると考えられる。信頼できると判断した根拠は、コラーゲン含有率が大きいこと、C /N比がコラーゲンの値とよく一致すること、測定値の頻度が多いことである。(b),(c) については、そのような¹⁴C年代値が得られたのは次の要因があると予想される。まず、 (b)については、コラーゲンの含有率が小さい、すなわち試料の保存の程度が悪いという

野 尻湖 層 産 ナウマンゾウ・オオツノシカ化 石の象牙質 コラーゲン の¹⁴ C 年代(沢田 ほか, 1992引用) S:可溶性コラーゲン 上部野尻湖層 I →上部 I 他の層 準も同様に表記 表 1

産出層準	サ ン プ ル 番 号	種 部 位	コラ - ケ`ン	コラーゲン 含 有 率 (%)	С / N	└ 4 C 年 代 (y.B.P)		
上 部 I 上 半 部	8 N - U - 1 3 m - 4	ナウマンソ [、] ウ 臼 歯	S G	0.28 0.77	3.11 3.63	34497±668		
	8 N - P - 9 m - 6	ナウマンソ [、] ウ 臼 歯	S G	0.52 2.14	$\begin{array}{c} 3.12\\ 3.65 \end{array}$	38314±1403		
	8 N - P - 9 m - 1	ナウマンソ [、] ウ 臼 歯	S G	0.26 0.98	3.21 3.75	38819±1579		
上部工	7 N - M - 18 m - 2	ナウマンソ゛ウ 臼 歯	S G	$\begin{smallmatrix}0&.&8&5\\1&.&3&0\end{smallmatrix}$	3.87	42540±1420		
1. 42 10	90-L-19 m-4	オオツノシカ 肢 骨	S G	$\begin{array}{c} 0.16\\ 0.14 \end{array}$	N, D 5.62	30583±1291		
	90-B-11 m-11	オオリノシカ 掌 状 角	S G	0.33 0.22	4.96 3.99	$\begin{array}{r} 34355\pm1345\\ 33659\pm1850 \end{array}$		
	90-G-6 m-13	ナウマンソ [・] ウ 臼 歯	S G	0.49 0.37	4.24	31920±700		
	87-L-23 m-1	ナウマンソ゛ウ 臼 歯	S G	2.41 1.20	3.79	40130±1080		
中英田	9 N - G - 7 m - 1 8	オオツノシカ 掌 状 角	S G	1.29 2.29	$\begin{array}{c} 3.10\\ 3.61 \end{array}$	40557±1496		
11 411 17	8 N - P - 2 3 m - 1 9	ナウマンソ゛ウ 臼 歯	S G	0.64 2.53	3.04 3.55	40772±1197		
×	90-E-29 m-1	ナウマンソ [、] ウ 臼 歯	S G	1.26 1.54	3.65	41700±1260		
	8 N - H - 1 2 m - 1 7	ナウマンソ゛ウ 臼 歯	S G	0.31 1.36	3.00 3.49	41516±1023		
中部 1	90-D-29 m-7	オオツノシカ 足 骨	S G	$\begin{array}{c} 0.16\\ 0.14 \end{array}$	5.72 4.46	35405±1550		
	90-B-29 m-2	ナウマンソ [、] ウ 臼 歯	S G	2.77 1.93	3.82	40860±1165		
	8 N - P - 1 3 m - 1 1	ナウマンソ [・] ウ 臼 歯	S G	0.54 2.97	3.10 3.62	45115±1349		
下部Ⅲ B3	87-E-18 m-3	ナウマンソ [、] ウ 臼 歯	S G	1.26 2.88	3.02 3.52	45812±1289		
	90-L-16 m-34	ナウマンソ゛ウ 切 歯	S G	0.15 0.21	5.30 5.16	35138±906		
	90-A-20 m-8	ナウマンソ゛ウ 臼 歯	S G	2.92 1.12	3.79 3.73	45100±1191		
下部Ⅲ B 2	9 N - Q - 16 m - 22	ナウマゾソ゛ウ 臼 歯	S G	1.35 4.22	2.94 3.43	42254±989		
	87-E-15 m-145	ナウマンソ゛ウ 臼 歯	S G	1.80 1.96	4.24 4.10	42671±1120		
下部Ⅲ B1	90-L-16 m-12	ナウマンソ・ウ 臼 歯	S G	1.22 2.06	3.92 3.82	41566 ± 927 42421 ± 1503		

産出層準	サ ン プ ル 番 号	種 部 位	コラー ケン	コラーゲン 含 有 率 (%)	C / N	└ 4 C 年 代 (y.B.P)
	8 N - C - 2 O m - 1	ナウマンソ・ウ 臼 歯	S G	1.68 1.78	3.64	43351±1164
下部 III B 1	87-E-17 m-18	ナウマンソ゛ウ 臼 歯	S G	0.29 0.70	3.15 3.68	48799±1950
	90-L-16 m-135	オオツノシカ 掌 状 角	S G		3.72	41250±1190
下部Ⅲ	87-E-23 m-16	ナウマンソ゛ウ 臼 歯	G	< 3.54	3.52	43520±1340
A 2	87-I-24 m-10	ナウマンソ゛ウ 切 歯	S G	0.63 0.29	4.42 4.32	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
下部Ш A1	8 N - H - 1 2 m - 4 3	ナウマンソ [、] ウ 臼 歯	S G	0.43 2.22	2.99 3.48	43307±1200
	90-A-29 m-17	ナウマンソ゛ウ 臼 歯	S G	0.40 0.58	3.92	43460±1630
下 部 Ⅲ 下 部	90-N-0 m-10	ナウマンソ・ウ 臼 歯	S G	0.30 0.73	3.58	41770±1470
	90-A-20 m-40	ナウマンソ゛ウ 臼 歯	S G	1.24 1.70	3.90	46230±2430
下部Ш 最下部	90-J-4 m-33	ナウマンソ・ウ 臼 歯	S G	0.55 0.48	4.07	43635±920

表2 材化石の14C年代(沢田ほか, 1992引用)

サ ン プ ル 番 号	産出層準	└ 4 C 年代 (y.B.P)
8N-H-7 b-16	上部Ш	17460±340
8N-X-18 b-18	上部Ⅲ	16860±250
90-Н-7 Ь-28	上部Ⅱ	28350±350
90-U-14 b-10	上部1上半部	3 2 7 3 0 ± 1 4 2 0
90-J-29 b-20	上部I下半部	38490±520
90-G-24 b-4	上部1下半部	39290±480
8 N - H - 11 b - 40	中部」	39420±950
8 N - Y - 1 4 b - 3	下部Ⅲ В 2	42550±530
8 N - Y - 13 b - 5	下部 III A 2	43070±570
90-N-0 b-12	下部॥下部	47150±810
90-J-3 b-20	下部 III 最下部	49410±970
90-X-18 b-8	J 列 層	8260±140

- 170 -

ことから、汚染による年代の若返りを示していると考えられる。(b)にあたるゼラチン化 コラ - ゲンの含有率が0.7%に満たない保存の悪い試料は、(a)にあたる0.7%以上の保存 のよい試料と比べて2,000~5,000年ほど新しい値を示している。

(c)のように他の値よりかけはなれた古い年代値については、再堆積した化石試料であ る場合と古い年代の炭素(Dead carbon)の汚染によるという2つの可能性が考えられる。 しかし、後者の場合、多量に汚染されていることになり、ここで扱った処理法では、そ の可能性は全くないといってよい。むしろ、産出した層準より下位の層準に含まれてい た化石が再堆積した二次化石であると考えられる。

ここで、信頼できる測定結果を各層準ごとにわかりやすくまとめると以下のようになる。

J列層	; 11,000~8,000 y.B.P.
上部野尻湖層Ⅱ•Ⅲ	; 33,000~11,000y.B.P.
上部野尻湖層 I	; 39,000~33,000y.B.P.
中部野尻湖層	; 41,000~39,000y.B.P.
下 部 野 尻 湖 層 Ⅲ B • A	; 43,000~41,000y.B.P.

下部野尻湖層 II 下部・最下部; 49,000~43,000y. B. P.

(a)グループに属する年代値について各々の層準の平均値をとり、それらを結ぶと図2に 示された太線が得られる。

ここで、これらの測定結果をβ線計数法による従来の資料と比較すると、その違いは 顕著である。図2において太線で示されている曲線は、前述のように、本研究で扱った 加速器質量分析計による¹⁴C年代値である。また、従来の野尻湖層の編年のもとになっ た中村由克・野尻湖発掘調査団(1990)による結果は細線の曲線によって示してある。 これらを比較すると、上部野尻湖層 II、すなわち約23,000y. B. P. までは両者の値はよく 一致するが、それより下位のものについては加速器質量分析計による年代値の方が約8, 000~15,000年古くなることがわかる。

このように、加速器質量分析計の測定値で約2万年前を越える年代値がβ線計数法に くらべ古い値を示すのは、測定法の特徴や測定試料の前処理や調製の仕方の違いによる という可能性が考えられる。加速器質量分析計による年代値は、材化石とナウマンゾウ の臼歯の象牙質コラーゲンとの間でよい一致を示している。しかし、β線計数法による 材化石についての測定値とその加速器質量分析計による測定値とは互いに異なる。この ことから、試料の種類の違いによる年代値の差ではないと考えられ、従来の23,000y.B. P.を越えるものの値は、取り込まれた新しい炭素の除去が不十分であったためか、また は、β線計数法の場合、測定の際バックグラウンドの影響を受けているとみることがで きよう。

V 野尻湖の火山灰層序学および人類考古学的研究との関係

1)野尻湖の火山灰層序との関係

野尻湖およびその周辺に分布する地層には、特徴ある火山灰やスコリア層が認められ ており、鍵層として層準の特定に大きな役割を果たしている。それらの相対的な新旧関 係は野尻湖発掘調査団の調査でほぼ確定していると言ってよい。しかし、それらの絶対 的な年代という点では、数多いβ線計数法による炭素同位体年代には相互に矛盾があり、 必ずしも確定していたわけではなかった。

野尻湖地質グループ(1990b)、公文・井内(1990)は、琵琶島沖の湖底でオールコア ・ボーリングを行い、野尻湖周辺に見いだされる火山灰鍵層がすべて含まれていること を報告した。また、いくつかの広域テフラの存在も確認した。そして、アカホヤ火山灰 (K-Ah)、姶良-丹沢火山灰(AT)およびブレッチャーゾーンの年代を基準に、堆積速 度を一定と仮定して、ボーリング試料における湖底からの深度から、主要な火山灰の年 代を推定した(公文・井内、1990;図3のa)。深度からは堆積期間が極めて短いテフ ラの層厚を除外した。野尻湖の湖底堆積物は、テフラ以外は均質なシルト質粘土であり、 堆積速度を一定とすることは無理のない仮定である。なぜなら、湖では、沿岸帯を除い て、おもに懸濁運搬による細粒堆積物が堆積していることが一般的であり、現在の野尻 湖においても同様である(公文・井内,1987;1988)。野尻湖底のボーリング試料でも、 3398 cm より上では現湖底と同様な細粒の泥質堆積物が卓越している。このような泥質 堆積物に限定すれば、堆積速度にはそれほど大きな時間的変化はないものと考えてよい からである。

沢田ほか(1992)が報告した加速器質量分析器による年代測定値を同じ湖底ボーリン グ柱状図の上に落とすと、図3のbの折れ線となる。湖岸の発掘地と湖底の柱状試料と は、岩相が大きく異なり、厳密にはテフラ鍵層しか対比できないので、年代値の層準に は多少問題が残っている。野尻湖層下部ⅢA, Bから産した化石の層準が湖底柱状のどこ に対応するのかは、特に難しいところである。この折れ線では、図2の折れ線に比べて かなりスムーズである。上部におけるデータが少ないという問題はあるが、ATやアジ シオなどは妥当な年代を示す。中部野尻湖層は、湖底柱状においては一層準で代表され る一連のテフラ(赤スコ・中Ⅱピンク)に対応している。その年代値は数多くあるが、 よく揃った値であり、中部野尻湖層が短い時間を表しているという湖底ボーリングでの 産状と調和的である。

加速器質量分析計で今回測定された年代値は、特定の層準に偏っていることやその層 準に不確かさが残ることが弱点である。湖底ボーリング試料では堆積速度を一定と仮定 できるという利点があり、相対的新旧関係を定量的に推定できる。両者を組み合わせる ことで、かなり正確なテフラの年代推定が可能である。つまり、次のように主要なテフ ラの年代を仮定する。比較的上部の年代については、アカホヤ火山灰の年代として6,30 0年前(町田・新井,1978)、ATの年代として21,000年前(町田・新井,1976)を つかう。中部野尻湖層の年代としては、平均値の41,000年前を用いる。ブレッチャーゾ ーンの年代値は2つにすぎないが、よく一致した値であり、その平均は46,700年前であ

- 173 -

る。以上4つの層準の間の堆積速度を一定とすると、図3のcの折れ線が得られる。そ れが現時点ではもっとも正確と考えられる年代を表していると考えられる。

折れ線 c の最上部の直線部(節)は、厚密が進んでいないために見かけの堆積速度が 大きくなっているものと考えられる。それは本当は徐々に傾斜が緩くなり、2つめの節 に移行するものである。2つめの節は赤スコの層準までつづき、比較的小さな堆積速度 をもっている。最後の節は、かなり大きな堆積速度を持っている。両者の境界の層準で 堆積の中心がボーリング地点から東方に移動していることは判明しており(野尻湖音探 グループ、1987)、その違いが堆積速度に反映しているものと考えられる。

この深度-年代関係に基づくと、太田切火山灰が4,000年前、赤倉火山灰が5,450年前、 キビダンゴ II が10,000前、キビダンゴ I が12,000年前、アジシオが16,500年前、上 I ピ ンクが33,500年前、ドライカレーが45,000年前、三点セットが53,000年前、黄ゴマ(= DKP,大山倉吉パミス)が約55,000年前となる。黄ゴマは、DKPと同定されている(早津, 1985;公文・井内,1990)。DKPの年代は46,000~47,000年前と推定されている(町田 ・新井,1979; Omura,1986)が、DKPの年代はもう少し古くなる可能性が高い。

この推定線でもかなり問題が残されている。それは、個々の鍵層テフラの年代を正確 に出すという視点での試料採取と年代測定が行われておらず、基準とするテフラの年代 として使える測定値が少ないことである。今後、このような視点での資料を増やして、 鍵層テフラの年代を1つ1つ詰めていく必要がある。

2) 人類考古遺物との関係

野尻湖の立が鼻遺跡では、下部野尻湖層 Ⅲから上部野尻湖層 I までの層準から、石製、 骨製、木製の遺物が得られている。この層準におけるナウマンゾウやオオツノシカから なる大型哺乳動物化石に伴っている遺物は一括して「野尻湖文化」としてとらえられて いる。野尻湖文化の最大の特徴は、石器と同程度に、あるいはそれ以上に骨器が含まれ る点にある。石器は、ナイフ形石器文化にみられるような典型的な形態のものが安定し てみられないこと、骨器の中には石器の後期旧石器時代以前を代表するクリーヴァーが 含まれ、また磨製骨器が欠如することなどの特徴は、野尻湖文化が後期旧石器時代より 以前の文化的要素を多くもっていることを示す。

以前より野尻湖文化の編年的位置づけについては多くの検討を重ねてきており、前期 旧石器時代から後期旧石器時代の初頭にかけてと考えられきた。β線計数法による¹⁴C 年代からは、約4.0~2.4万年前としていた(中村由克・野尻湖人類考古グループ,1990)。 年代的にみると新しい方は、ナイフ形石器文化期に属すことが予想されていたが、ナイ フ形石器文化の典型的な石器がみられないことから、石器群の違いは立が鼻遺跡がキル サイトであるという遺跡の性格の違いによる可能性が検討されてきた。

しかし、加速器¹⁴C年代から、野尻湖文化は、4.9~3.3万年前のものであると考えられる。この年代は、これまでのβ線計数法による¹⁴C年代値よりは不都合な点が少ない と思われる。この加速器¹⁴C年代や野尻湖文化とその直後のナイフ形石器文化の考古学 的位置づけから判断して、野尻湖文化は、日本の前期旧石器時代の末期に位置づけられ ると思われる(中村由克・野尻湖人類考古グル-プ,1992;野尻湖人類考古グル-プ,1993)。

ユーラシア大陸とアフリカにおいて、¹⁴C年代で約4.2~3.3万年前にかけては、前期 (中期)旧石器文化と後期旧石器文化の両方がみられ、また、ネアンデルタール人に代 表される旧人からクロマニョン人に代表される新人に移行する時期とされている。野尻 湖ではまだ人骨が出土していないが、野尻湖文化の特徴とその年代値は、旧人段階から 新人段階への移行期に相当するものであることが予想され、人類史の上からも野尻湖文 化の解明はますます重要な意義をもってくると思われる。

おわりに

加速器質量分析計を用いた¹⁴C年代および湖底ボーリング試料に基づき、野尻湖層の 年代の再検討を行った。そして、この新しい年代論により、野尻湖の火山灰層序や旧石 器時代の人類考古学的研究に新しい解釈が加えられ、また、問題となっていたいくつか のことが明らかになりつつある。今後さらに、本研究の対象となった層準より下位の試 料や火山灰鍵層に焦点をあてた年代測定を行い、野尻湖における研究も展開していくこ とを期待する。

謝辞

この研究を行うにあたり、野尻湖発掘調査団の方々から貴重な試料を提供していただき、さらに、測定結果の解釈について討論していただいた。ここに謝意をあらわす次第である。

参考文献

Hare, P. E., and von Endt, David., (1990) Variable preservation of organic matter in fossil bone. Annual Report of Director of the Geophysical Laboratory, Carnegie Instite Washington, 1989–1990, Geophysical Laboratory, Washington, D. C., 115–118.

早津賢二(1985)妙高火山群 - その地質と火山活動史 - . 344p. 第一法規出版,東京 早津賢二・新井房夫(1980)妙高火山群テフラ地域の第四紀テフラ層 - 指標テフラ層の 記載および火山活動との関係 - . 地質学雑誌, 86, 243-263.

- 早津賢二・永高 賢・田代達雄(1980)黒姫火山・六月火山礫層(RG)の14C年代 とそれに関係した2・3の問題. 第四紀研究, 19, 49-51.
- 公文富士夫・井内美郎(1990)中部地方、野尻湖の湖底ボーリング試料と音波反射 層との対比. 地質学論集, 36, 167-178
- 公文富士夫・井内美郎 (1987) 中部地方,野尻湖底堆積物の粒度分析(予報). 信州 大・理・紀要, 22, 39-48.

公文富士夫・井内美郎(1988) 中部地方,野尻湖の湖底堆積物.砕屑性堆積物の研究, No.5, 73-83.

- 公文富士夫・井内美郎(1990)中部地方,野尻湖の湖底ボーリング試料と音波反射層と の対比. 地質学論集, No.36, pp.167-178.
- 町田 洋・新井房夫(1976)広域に分布する火山灰 姶良Tn火山灰の発見とその意義 . 科学, 46, 339-347.
- 町田 洋・新井房夫(1978)南九州鬼界カルデラから噴出した広域テフラ-アカホヤ火山灰. 第四紀研究, 17, 143-163.
- 町田 洋・新井房夫(1979)大山倉吉軽石層-分布の広域性と第四紀編年上の意義-. 地学雑誌, 88, 313-330.
- 野尻湖地質グループ(1980)野尻湖発掘とその周辺の地質(1976-1978). 地質学論集, 19, 1-31.

——— (1984)野尻湖の層序 – 野尻湖発掘とその周辺の地質 その3 (1979-1983) 地団研専報, 27, 1-21.

(1987)野尻湖発掘とその周辺の地質 その5(1984-1985).地団研専報,32,
 1-21.

(1990a)野尻湖発掘とその周辺の地質 その6(1986-1988).地団研専報,37,
 1-13.

 — (1990b)野尻湖におけるボーリング試料の層序とその意義.地団研専報,37,
 15-20.

- 野尻湖地質グループ音波探査サブグループ (1987) 音波探査による野尻湖底堆積物の 層序と形成史. 地団研専報, 32, 23-36.
- 野尻湖発掘調査団(1990)野尻湖発掘地の地質層序と古環境.地団研専報, 37, 16 1-178.
- 中井信之·中村俊夫(1988)放射性炭素年代測定法.地質学論集, 29, 235-252.
- 中村俊夫・中井信之(1988)放射性炭素年代測定法の基礎 加速器質量分析法に重点を おいてー. 地質学論集, 29, 83-106.

----- ・ ----- (1991)加速器法による4万年前より古い試料の¹⁴C年代測定についての検討. 堆積学研究会報, 34, 27-32.

中村由克・野尻湖発掘調査団(1990)野尻湖立が鼻遺跡の旧石器文化と古環境.第 四紀研究, 28, 257-268.

・ (1992) 長野県仲町遺跡における第6回陸上発掘の成果 – 前期・後期旧石器時代の石器文化. 日本考古学協会第58回総会研究発表会要旨,14-17

- 野尻湖人類考古グル プ(1993)第11次発掘の考古学的成果. 野尻湖博物館研究報告, 1(印刷中)
- Omura, A., (1986) Age estimation of the Daisen Kurayoshi Pumice using the ²³⁰Th-²³⁸U radioactive disequilibrium system. Quaternary Reseach, 25, 129–13 2.
- 沢田 健・有田陽子・中村俊夫・秋山雅彦・亀井節夫・中井伸之 (1992) 加速器質量 計を用いた¹⁴C年代測定による野尻湖層の編年.地球科学,46,133-142.