ルーマニア, Ciomadul 火山の最終噴火とその¹⁴C年代

守屋以智雄*・奥野 充**・中村俊夫*** A. Szakacs****・I. Seghedi****

* 金沢大学文学部地理学教室	〒920-11 金沢市角間町
** 名古屋大学大学院人間情報学研究科	〒464-01 名古屋市千種区不老町
(日本学術振興会特別研究員)	
*** 名古屋大学年代測定資料研究センター	〒464-01 名古屋市千種区不老町
**** Inst. Geol. Geofi. Romania	Str. Caransebes 1, 78344 Bucarest 32 Romania

1. はじめに

ルーマニアのカルパチア山脈の西側には北西-南東方向の火山列がある(Fig. 1)。 これらの火山は 9~0.22Ma に活動し、現在ではすでにその活動は終息したものと考え られてきた。しかし、火山列のほぼ最南端にある Ciomadul 火山から噴出した火砕流堆 積物中の炭化木片の¹⁴C年代値は 10,070±180 yr BP (MBN-456) であり(Juvigne *et al.*, 1994)、まだ活動が終息していないことを示唆している。筆者の一人守屋は、文部省国 際学術調査(代表 野津憲治)で現地調査を行う機会を得た。その際に Ciomadul 火山の 最終噴火の年代を示すと考えられる試料(炭質物)を採取できたので、名古屋大学年代 資料測定研究センターのタンデトロン質量分析計(Nakamura *et al.*, 1985;中村・中井, 1988)を用いて¹⁴C年代を測定した。本稿ではその結果を報告する。

Fig. 1 Map showing the distribution of Romanian volcanic chain.

2. ルーマニアの火山列とその周辺地域の概要

この地域はヨーロッパプレートとアフリカプレートの境界に形成されたほぼ東西に連なる変動帯の中にある(Brunn, 1976; Laj, 1982: Fig. 2)。ここではいくつかのマイクロプレートが基本的にヨーロッパプレートとアフリカプレートに規制されながら、かなり複雑な動きを行ってきたと推定される。Carpathia 山脈の外側では、かつてプレートの沈み込みが起こり、ここで取り扱うルーマニアの火山列はこの沈み込みに伴って生じた島弧型の火山からなると考えられている(例えば、Seghedi *et al.*, 1994: Fig. 3)。

ルーマニアの火山の大部分は成層火山で、北から Calimani, Gurghiu, Harghita, Luci, Cucu, Ciomadul など 10 余個の火山がほぼ相接して並ぶ(Fig. 4)。Calimani 火山は 9~ 7 Ma にかけて活動した(Pecskay *et al.*, 1992)玄武岩-安山岩質の大型円錐火山体を持 ち、山頂カルデラ、軽石流、土石流堆積物からなる火山麓扇状地が認められる。安山岩 質溶岩流を主体とした Gurghiu, Harghita 火山には流れ山をもつ岩屑なだれ堆積面が残る。

これらの火山は北から南にかけて次第に活動時期が若くなる。Luci、Cucu 火山では各々 4.4~3.6Ma, 2.8~2.2Ma となり、ほぼ最南端に近い Ciomadul 火山は 1~0.22Ma である (Pecskay *et al.*, 1992)。

岩質は北の Calimani 火山がソレアイト岩系、中部の Harghita 火山群がカルクアルカリ 岩系、南部の Ciomadul 火山のすぐ南にある Bixad-Malnas 火山がアルカリ岩系と南にい くにしたがいアルカリの量が増加する。また南部の Ciomadul 火山などは、溶岩ドーム を主体とする小火山で構造線を境に北の成層火山が卓越する地域と異なる (Seghedi *et al.*, 1994)。

1=Euro-Asiatic Plate, 2=margin of this plate involved in the Alpine tectonics, 3=Indian and Arabian plates, 4=margins of these plates involved in the Alpine tectnics, 5=inter-plate domains, 6=molassic sedments, 7=olistostromes, 8=directions of the relative moment of the Indian and Arabic-African plates, the latter being deviated towards the northwest since Eocene times, 9=direction of the early radial thrusting in the arcs, 10=direction of the late thrusting towards intraarc depressions.

Fig. 3 Schematic sketches showing that the volcanic chain was generated by subduction (Seghedi *et al.*, 1994).

3. Ciomadul 火山の地形と形成史

Ciomadul 火山の地形分類図を示す(Fig. 5)。Ciomadul 火山は約10個の溶岩ドームと その一部を破壊して形成された2個の爆裂火口、それらの周囲に分布する緩斜面とから なる。溶岩ドームはいずれも底径1~2km、比高150~400m 前後の平均的なものであ るが、原形を保ったごく最近に形成されたと思われるものから、かなり侵食を受けてそ の原形を失ったものまでさまざまあり、かなり長い時間をかけて溶岩ドーム群として成 長してきたと考えられる。これら溶岩ドーム群は角閃石黒雲母デイサイト質溶岩からな るが、その K-Ar 年代値は1~0.22Ma とされてきた。Sfinta Ana, Mohos の2個の爆裂火 口は2~3個の溶岩円頂丘を破壊して溶岩ドーム群のほぼ中央に生じ、なお新鮮な地形 を持つ。より若い Sfinta Ana 火口は直径 1.5km、深さ約 200m で、火口底に湖が存在す る。相接してすぐ北東にある Mohos 火口は直径 2 km、深さ 100m 弱と Sfinta Ana にくら べかなり浅く、Sfinta Ana 火口からの噴出物に埋められていることは明らかである。こ れら2個の爆裂火口の周辺にはこの形成に伴う噴出物が厚く堆積し、一部ではかなり顕 著な緩斜面をつくっている。

Fig. 5 Geomorphic map of the Ciomadul volcano.

4. 最終噴火とその経過

2個の爆裂火口はその地形の新鮮さから、ほぼ同時期に生じたと考えられるが、そこから噴出された堆積物は、噴出順に①降下軽石→ ②軽石流→ ③細粒火山灰・火砕サージの3つに分けられる。以下に、これらの堆積物がすべて見られる Ciomadul 火山西麓の Tusnad 温泉の南 2 km の露頭 (Fig. 6) での観察結果をのべる。

Fig. 6 Schematic cross section at the point 2km south from Baile-Tusnad including a series of the eruption products of the Ciomadul volcano.

- 87 -

降下軽石は厚さ約4m、4~5枚の fall units に分かれる。いずれも灰白色の軽石から なり、最大粒径は4 cm である。一部に直径4 cm 以下の石質岩片が含まれるが、その大 部分は溶岩ドームをつくる溶岩片である。この降下軽石の体積は、分布の全容が明らか ではないため詳しい議論はできないが、東斜面上で3m以上、火山体東方20km 地点で 20~25cm の厚さで認められることから、約1~2 km³程度と推定される。

軽石流は降下軽石の直上を整合に覆っており、腐植土などの時間間隙を示す証拠も見いだされない。この堆積物の厚さは約10mで、3~4枚のflow unitsに分けられるが、いずれも灰白色の軽石粒(最大粒径10cm)と同質の細粉とからなる。石質岩片は5~10cm のものが多く、その大部分は溶岩ドーム起源のデイサイトである。溶結部は認められない。

最上部には灰色の細粒火山灰を主体とする厚さ約4mの噴出物が存在する。これには 土石流堆積物と見られる厚さ1~2mの亜角礫層が介在しており、細粒火山灰が斜面に 堆積することによって透水係数が急減し、流水が激増したために土石流が発生するよう になったことを示唆する。細粒火山灰層はCiomadul火山のほぼ全域にわたって表層部 に認められる。山頂爆裂火口のすぐ東の火口縁に3m以上の厚さの同層が認められるが、 それは明瞭な成層構造を持ち、一部に火山豆石が含まれる(Seghedi and Szakacs, 1988)。 これは軽石噴火で生じた火口内に溜まった水と上昇してきたマグマが接触して起こった マグマ水蒸気爆発による堆積物と考えられる。もし火口内に水が溜まらなければ溶岩ド ームが形成されたかも知れない。

5. 溶岩ドームと軽石噴出物との年代関係

上記の Tusnad 温泉南 2 km の軽石層の露頭は溶岩ドームの基部に露出し、溶岩ドーム の下位、すなわち溶岩ドームより古いとの考えがあったが、溶岩ドーム山頂の平坦部で 表層部を掘削した結果、軽石粒が見いだされ、溶岩ドームが軽石層より古いことが明ら かとなった。このことはこの露頭のすぐ背後が段丘状になっていることからも裏づけら れる。ただ火山体北東部にある新鮮な原地形を保持する 2 ~ 3 個の溶岩ドームは爆裂火 口形成後に生じた可能性もある。

軽石流堆積物上部から炭化木片が見いだされ、10,070±180 yr BP (MBN-456) との ¹⁴C年代値が得られている(Juvigne *et al.*,1994)。同時に Mohos 火口底埋積層最下底の泥 炭層の¹⁴C年代値は7,610±60 yr BP (Lv-2070) と互いに調和するが(Juvigne *et al.*, 1994)、 従来の K-Ar 年代測定による Ciomadul 火山の活動時期 1 ~ 0.22 Ma とは大幅に食い違っ ている。筆者らは、最終噴火の堆積物の基底にある古土壌の中の炭質物(おそらく植物 根)について¹⁴C年代測定を2回行い、>36,770 yr BP (NUTA-3409) と >42,650 yr BP

(NUTA-3622)の結果を得た。爆裂火口の地形の新鮮さは、最終噴火が約1万年前との Juvigne et al. (1994)の結果を支持しており、今回測定した古土壌中の炭質物の¹⁴C年代 もほぼ同様の値を示すものと予想したが、大きく食い違った。この理由については、ま だよくわかっていないが、1)古土壌中の炭質物は、最終噴火の軽石降下以前の山火事に よるものである、2)最終噴火によると見られる一連の軽石堆積物の間に大きな時間間隙 が隠されているのを見逃している、3)¹⁴C年代値のどちらか、あるいはどちらも間違っ ている、などの可能性が考えられる。今後さらにデータを集めて検討する必要がある。

引用文献

- Brunn, J. H. (1976) : L' arc concave zagro-taurique et les arcs convexes taurique et égéen: collison et arcs induits. *Bull. Soc. Géol. Fr.* (7), **18**, 553-567.
- Juvigne, E., Gewelt, M., Gilot, E. Hurtgen, C., Seghedi, L., Szakacs, A., Gabris, G., Hadnagy, A. and Horvath, E. (1994) : Une éruption vieille d'environ 10700 ans (¹⁴C) dans les Carpates orientals (Roumanie). C. R. Acad. Sci. Paris, 318, ser. II,1233-1238.
- Laj, C., Jamet, M., Sorel, D. and Valente, J.P. (1982) : First paleomagnetic results from Mio-Pliocene series of the Hellenic sedimentary arc. *Tectonophys.*, 86, 45-67.
- 中村俊夫・中井信之(1988): 放射性炭素年代測定法の基礎 加速器質量分析法に重点を おいて – . 地質学論集, 29, 83-106.
- Nakamura, T., Nakai, N., Sakase, T., Kimura, M., Ohishi, S. Taniguchi, M. and Yoshioka, S. (1985) : Direct detection of radiocarbon using accelerator techniques and its application to age measurements. *Jpn. J. Appl. Phys.*, 24, 1716-1723.
- Pecskay, Z., Szakacs, S., Seghedi, I. and Karatson, D. (1992) : Contributons to the geochronology of Mt.Cucu volcano and the south Harghita (East Carpathians, Romania). *Foldtani Kozlony*, 122/2-4, 265-286. (in Romanian)
- Seghedi, I., Szakacs, A., Stabciu, C. and Ioane, D. (1994) : Neogene arc volcanicity/metellogeny in the Calimani-Gurghiu-Harghita volcanic MTS. In Field Trip Guide--Plate tectonics and metallogeny in the east Carpathians and Apuseni MTS, Geol.Inst.Romania., 12-17.
- Szakacs, A.and Seghedi, I. (1989) : Base surge deposits in the Ciomadul, Massif (South Harghita Mountains). D.S.Inst.Geol.Geofiz., 74/1, 175-180.

口形成後に至した可能性もある。 軽石液単遺物上結から炭化水片が見いだされ、10,070±180 ycbP(MBN-456)との *C年代植か得られている「Provigne & 41,1994)。同時に Mohos 火口底埋蔵環最 千度の院 装置の *C年代植ま7,610±60 yr BP(Dx-2070)と至1 vに調用するが「Invigne et al. 1994)。 でいる。辛苦らは、最終噴火の維積物の速度にある古土線の中の炭質物(おそらく植物 し、ついて *C年代測定を2回行い、>30,770 yr BP(NUTA-3409)と *42,050 yr BP (NUTA-3622)の結果を得た。爆発火口の地形の新鮮さは、最終噴火が約1万年前との Invigne et al. (1994)の結果を支持しており、今回測定した古土線中の炭質物の *C年代 もほぼ同様の値を示すものと予想したが、大善く食い違った。この理由については、ま たこくわかっていないが、1)古土袋中の炭質物は、最終噴火の軽石降下没前の山火車に よるものである、3) 最終噴火によると見られる一連の軽石堆積物の間に大きな時間間線

Last eruption and its ¹⁴C age of Ciomadul volcano, Romania

Ichio MORIYA*, Mitsuru OKUNO**, Toshio NAKAMURA*** Alexandru SZAKACS**** and Ioan SEGHEDI****

* Department of Geography, Faculty of Letters, Kanazawa University, Kakuma-machi, Kanazawa, 920-11, Japan.

** Graduate Student (JSPS Research Fellow), Graduate School of Human Informatics, Nagoya University, Chikusa-ku, Nagoya, 464-01, Japan.

*** Dating and Materials Research Center, Nagoya University, Chikusa-ku, Nagoya, 464-01, Japan.

**** Inst. Geol. Geofi. Romania, Str. Caransebes 1, 78344 Bucarest 32 Romania.

Abstract

A 9 - 0.22 Ma volcanic chain ranges in the west of the Carpathian Mountains, Romania. These volcanoes are younger in southward. At the southernmost of the volcanic chain Ciomadul volcano, a cluster of more than 10 dacitic lava domes was dated at 1 - 0.22 Ma by K-Ar dating. Juvigne *et al.* (1994) has obtained a ¹⁴C age of $10,070\pm180$ yr BP (MBN-456), dating a piece of charcoal in the pumice flow deposit of the last eruption. We have obtained, however, rather older ¹⁴C ages, i.e., >36,770 yr BP (NUTA-3409) and >42,650 yr BP (NUTA-3622), dating a organic material just underlying the pumice fall deposit of the last eruption.

Key words: Romania, Last eruption of the Ciomadul volcano, ¹⁴C age

Last eruption and its ¹C age of Ciomadul volcano, Ro**長**発現し

- 1)守屋以智雄・奥野 充・中村俊夫・A. SZAKACS・I. SEGHEDI: ルーマニア Ciomadul 火山の最終噴火と¹⁴C年代. 1995年地球惑星科学関連学会合同大会, 日本大学, 1995年3月.
- 2)守屋以智雄・奥野 充・中村俊夫・A. SZAKACS・I. SEGHEDI: ルーマニア Ciomadul 火山の地形と最終噴火. 日本地理学会1995年度春季学術大会, 筑波大 学, 1995年3月.

A 9 + 0.22 Ma volcasic chain ranges in the west of the Carpathian Mountains, Romania. These volcances are younger in southward. At the southernmost of the volcanic chain Ciomadul volcano a cluster of more than 10 ducitic lava domes was dated at 1 + 0.22 Ma by K-Ar dating. Juvigne et al. (1994) has obtained a ¹⁴C age of 10,070 \pm 180 yr BP (MBN-456), dating a piece of charcoal in the pumice flow deposit of the last cuption. We have obtained, however, rather older ¹⁴C ages, 12, 520 yr BP (MON-456), dating a piece of charcoal in the pumice flow deposit of the last cuption. We have obtained, however, rather older ¹⁴C ages, 12, 520 yr BP (NUTA-3622), dating a organic material i.e., \geq 36, 770 yr BP (NUTA-3499) and \geq 42,650 yr BP (NUTA-3622), dating a organic material inst underly ing the pumice full deposit of the last cuption.

Key words: Romania, Last eruption of the Ciomadul volcano, "C age