琵琶湖の湖底堆積物ならびに流入河川堆積物の

炭素同位体比から探る堆積環境

南 雅代¹⁾·種 紀彦²⁾·小田寛貴³⁾·横田喜一郎⁴⁾

1) 名古屋大学大学院環境学研究科地球環境科学専攻

〒464-8602 名古屋市千種区不老町 TEL: 052-789-3030

e-mail: minami@eps.nagoya-u.ac.jp

2) 名古屋大学理学部地球惑星科学科

3) 名古屋大学年代測定総合研究センター

4) 琵琶湖研究所

【はじめに】

琵琶湖はカスピ海やバイカル湖などとともに古代湖の一つである。約400年前、瀬戸内沈 降帯における六甲変動(Ikebe, 1956)の東西性圧縮により、三重県の伊賀地方にできた盆地に 水がたまって今の琵琶湖のもとである古琵琶湖が形成されたと考えられている。その後古琵 琶湖群の堆積盆地は沈降部が北西側の近江盆地に移動し、古琵琶湖は約320万年前に土砂に 覆われた。そして約50万年前に北湖が広い琵琶湖になり、粘土が堆積するようになった。現 在でも北湖地域の基盤は年間1~2mm沈降している(横山, 1987)。

琵琶湖は琵琶湖大橋を境に北湖盆と南湖盆に分けられる。北湖は琵琶湖の90%以上を占め ており、平均深度は約43mと深い。そのため波浪や船舶の渡航によって湖底堆積物が巻き上 げられている可能性は少なく、湖底環境は南湖に比べて閉鎖的である。南湖は北湖とは異な り、面積は小さく、平均深度も約4mと浅い。そのため波浪や船舶の渡航によって堆積物は 巻き上げられており、Yokota et al. (1996)によればその効果は少なくとも2~3cmに及ぶ。 北湖と南湖では湖の周囲の状況も異なる。北湖の周辺域は近年、製造業などの産業の発達が 顕著であるが、古くからの自然環境が保たれており、産業の中心は農業である。それに対し 南湖の周辺域は北湖に比べて人口密度が高く、都市化が進んでいる。琵琶湖には約460本の 河川が流入しており、このうち直接流入しているのは120本である。流出している河川は人 工的な疏水を除けば、瀬田川のみである。

琵琶湖湖底堆積物に関しては今までに多くの研究がなされている。1971 年から琵琶湖底で 行われた深層ボーリングでは 200m、1000m、1400m のコアが採取され火山灰及び古地磁気層 序による対比が示されている(Horie, 1984)。我々は、北湖、南湖、その境界部で採取された 琵琶湖湖底堆積物コアに対して、Sr 同位体比(南ほか, 2002; Minami et al., 2003)、有機態金属 元素(安藤ほか, 2003)、主成分元素、微量元素の分析(南ほか, 2004)を行ってきた。本研究 では湖底堆積物コアの鉛直方向の炭素同位体比の変化を調べるとともに、琵琶湖に流入して いる主な河川の川床堆積物や後背地に存在する石灰岩の炭素同位体比についても分析を行い、 河川堆積物や石灰岩の琵琶湖湖底堆積物に与える影響について調べた。

【試料】

湖底堆積物 KAN、KAS は北湖 (C10:35°23′00″N;136°07′99″E, 深度 89.6m地点)、 南湖 (C3:35°03′64″N;135°54′22″E, 深度 3.6m地点) で 2002 年 5 月に採取された ものを使用した。試料採取は KK - 土壌回収装置 (長さ 60cm、直径 5cm のアクリルチューブ) によってなされた。コアの長さは北湖 39cm、南湖 47cm、境界部 17cm であった。試料はシル ト質泥で、表層から 2~3cm は茶色、それ以深では暗灰色をしている。北湖と南湖と比べると、 北湖の堆積物の表層部のほうが茶色の層がはっきりしている。試料採取後、コアは表層から 10cm までは 0.5cm に、10cm より下は 1cm の長さにスライスして凍結乾燥した。その後ボー ルミル・乳鉢によって砕いた。

河川堆積物は 2003 年 7 月に比良川、安曇川、百瀬川、知内川、大川、大浦川から、11 月 に姉川、愛知川、野洲川から、2004 年 2 月に日野川、瀬田川から採取されたものを使用した。 河川堆積物は 80 メッシュ(180 メッシュ)のふるい二度かけて採取した。採取後乾燥し、ボ ールミル・乳鉢によって砕いた。大川、大浦川には魚の死骸が見られ、愛知川にはコケが見 られた。

石灰岩は 2004 年 12 月に伊吹山から採取した。採取地点は伊吹山登山道一合目付近(35°24′27″N;136°23′20″E,標高 420m地点)、伊吹鉱山入口(35°23′64″N;136°23′60″E,標高 300m地点)である。石灰岩は灰黒色で片理が発達していたが、肉眼で化石は確認できなかった。試料はステンレス乳鉢で粉末になるまで粉砕した。

【分析方法】

堆積物試料に対しては、約2gをはかり取り、1.2M-HClを加えホットプレート上で80℃に 加熱して炭酸塩を除去する酸処理を4回行った。この時の酸抽出液(黄~黄橙色)は遠沈管 に入れて遠心分離をし、上澄み液を「酸可溶成分」として回収した。その後、1.2M-NaOHで アルカリ処理を行い、この時のアルカリ抽出液(褐色)は遠沈管に入れて遠心分離をし、上 澄み液を「アルカリ可溶成分」として回収した。その後再び酸処理を行って、アルカリ処理 中に溶け込んだ炭酸を除去した。最後に蒸留水を加え 80℃に加熱して酸を除いた。残渣は 80℃で乾燥し「酸アルカリ不溶成分」として扱う。

処理された試料を約 200mg はかりとり、約 1g の酸化銅と銀線を加えてバイコール管に入れ、 石英綿でふたをして、真空ラインで真空に引いた後封管した。その後マッフル炉にて 850℃ で 2 時間加熱した。燃焼後のバイコール管を CO₂精製ラインにつなぎ、液体窒素(-196℃)、 エタノール+液体窒素(-100℃)、ペンタン+液体窒素(-127℃)の3種類の寒剤を用いて、試 料中の CO₂を精製した。

石灰岩試料に対してはリン酸分解を行った。Y 字反応管の一方に石灰岩試料を、一方にリン酸 2 - 3ml を入れ、CO₂精製ラインにつないで真空に引いた後、反応管を回してリン酸と試料を反応させ、生じた CO₂を寒剤を用いて精製した。

CO2 の一部は水素還元法により、グラファイトとし、名古屋大学年代測定総合研究センタ

ーのタンデトロン加速器質量分析計により Δ^{14} Cを測定した。また、残りの CO₂を用いて、ト リプルコレクター式気体用質量分析計(Finnigan MAT 社製, MAT-252)により δ^{13} C 値を測定 した。標準物質にはシュウ酸(SRM4990)を用いた。

【結果と考察】

湖底堆積物の堆積速度

南ほか(2004)に示されている北湖堆積物(BWA-N)と南湖堆積物(BWA-S および KAS) の²¹⁰Pb_{excess}と¹³⁷Csのデータを以下に示す。

Fig.1 Vertical distribution of excess ²¹⁰Pb and ¹³⁷Cs in bottom sediments of Lake Biwa

BWA-NとBWA-Sは、それぞれKANとKASと同地点で1998年に採取された堆積物コア試料である。南湖堆積物試料については、過剰²¹⁰Pbからは減衰曲線が得られず、堆積速度を求めることができないが、BWA-S試料については¹³⁷Csの濃集層が表層から8~9cmの深さの層に見られ、このピーク位置を1964年として堆積速度を求めると0.046g/cm²/yr(0.23cm/yr)となる。北湖堆積物試料については、過剰²¹⁰Pbに減衰が見られ、BWA-N試料の堆積速度を求めると、深さ2.5~4.0cm間の非常に堆積速度が速い層を除いて0.011g/cm²/yr(0.13cm/yr)となる。また、BWA-N試料に対しては¹³⁷Csの濃集層が表層から4~5cmの深さの層に見られ、このピーク位置から堆積速度を見積もると 0.13cm/yr となり、²¹⁰Pbから得られた堆積速度とほぼ一致する。松本(1975)によると北湖の堆積年代は 0.13cm/yr、南湖は 0.08cm/yr と報告

されている。北湖については類似しているが、南湖についてはかなり相違点があることがわ かる。

次に、以上の結果をもとに KAN、KAS の堆積速度の推定を行う。南ほか(2004)のデータ に基づき、KAN、KAS、BWA-N、BWA-S の TiO₂/Al₂O₃ の深度分布を Fig.2 に示す。この図か ら、北湖に関しては鉛直分布がほぼ同じであるが、南湖に関しては KAS の 11cm と BWA-S の 19cm がそれぞれ対応し、KAS のほうが BWA-S に比べて堆積速度が速いことがわかる。 Sr 同位体比に関しても、BWA-S では 10cm のところで、KAS では 19cm のところで、同様の 急激な変化を示す(Minami et al., 2003)ので、この鉛直方向の対応関係は確かであると考え られる。BWA-S の堆積速度 0.23cm/yr をもとに KAS の堆積速度を求めると 0.40 cm/yr となる。 南湖では場所によってかなり堆積速度が異なっている可能性が考えられる。本研究では以降、 北湖の堆積速度を 0.13 cm/yr、南湖は 0.40 cm/yr として議論を進めていく。

Fig.2 Vertical distribution of TiO₂/Al₂O₃ ratio in lake sediments

湖底堆積物から抽出した酸アルカリ不溶成分量

酸-アルカリ-酸(AAA)処理後の残 渣(酸アルカリ不溶成分)量を、Fig.3 に、 乾燥泥中の重量%で示す。北湖堆積物 (KAN)は深度10cmから表層にかけて 減少傾向にあり、最表層部で最小値を示 す。南湖堆積物(KAS)は深度20cmか ら表層にいくにつれて減少傾向を示し、 やはり最表層部で最小値を示す。これよ り琵琶湖堆積物表層部は酸に溶けやすい 炭酸塩・フルボ酸などが多く含まれてい ることがわかる。 Fig.3 Vertical distribution of residue content after AAA treatment for lake sediments

<u>湖底堆積物から抽出した成分の炭素量</u>

Fg.4 に湖底堆積物のバルク、酸可溶成分、酸アルカリ不溶成分中の炭素含有量の鉛直 分布示す。北湖堆積物(KAN)では、いずれの成分も最表層部で一番高く、その後深 度 5cm へかけて急激に減少し、5cm 以深の層ではほぼ一定値を示す。表層部において 炭素含有量が高いのは、深い層の炭素はバクテリアの働きにより分解されたのに対し、 表層では分解途中のために炭素含有率が高いと考えられる。南湖堆積物(KAS)でも、 いずれの成分も同じ分布傾向を示しており、19cm で最大値、19cm 以浅、以深では単調 に減少している。KAN と KAS の鉛直分布の違いは非常に明らかである。

南湖周辺は北湖周辺に比べ、都市化が進んでおり、周辺都市から生活排水や工業排水 が流れ込む環境にあるといえる。特に 1960~1970 年は琵琶湖に大量の生活排水や工業 排水が流入したために水質悪化が叫ばれた頃である。南湖堆積物の 19~21cm における ピークは、湖の富栄養化のピークを示している可能性が考えられる。

<u>湖底堆積物から抽出した成分のδ13C</u>

Fg.5 に湖底堆積物の酸可溶成分、酸アルカリ不溶成分の δ^{13} C 値の鉛直分布を示す。 酸可溶成分のほうが酸アルカリ不溶成分より、KAN では約2%、KAS では3~4%高い。 酸可溶成分にはフルボ酸が主に含まれると推測される。フルボ酸はフミン酸の分解物で あり、ポリウロニドなどの多糖類が中心の無色部分と着色部分とからなる。一方、酸ア ルカリ不溶成分としてはアルカン、脂肪酸、リグニン-フェノールなど比較的安定な物 質が考えられている (Uemura and Ishiwatari, 1995)。酸可溶成分のほうが酸アルカリ不溶 成分よりも高い δ^{13} C 値を示したのは、腐食物質の分解につれて、軽い炭素が失われ、 δ^{13} C 値が高くなったためと考えることができる。

KAN のδ¹³C 値は最表層から深度 5cm まで増加し、最大値をとった後、深度 10cm ま

で減少し、極小値をとり、それ以深では徐々に増加している。一方、KAS のδ¹³C 値は 最表層から深度 20cm まで増加し、最大値をとった後、それ以深では減少している。KAN と KAS を比べると、KAN のほうが低いδ¹³C 値を示す。

KAS の 20cm におけるピークは、炭素含有量のピークと一致する。琵琶湖の富栄養化 が進み、相対的にδ¹³C の高い植物(藻類・プランクトン)が大量発生した、あるいは 富栄養化が進んだ河川からδ¹³C の高い植物が多量に流入したことなどが考えられる。

Fig.5 Vertical distribution of δ^{13} C for residue (acid-alkali-insoluble fraction), and acid-soluble fraction

<u>湖底堆積物から抽出した成分のΔ¹⁴C</u>

Fg.6 に湖底堆積物の酸可溶成分、酸アルカリ不溶成分の Δ^{14} C の鉛直分布を示す。KAN は 5cm 以浅で Δ^{14} C の増加が著しいことがわかる。KAS は深度 20cm で最大値をとり、 それ以深、以浅では急激に減少している。また、KAN、KAS いずれにおいても酸アル カリ不溶成分のほうが酸可溶成分に比べて低い Δ^{14} C 値を示す。この傾向は δ^{13} C と同様 であり、腐食の段階で軽い炭素が失われ、 Δ^{14} C 値が高くなったためと考えることがで きる。KAN、KAS いずれも Δ^{14} C は 1920 年頃から上昇をはじめ、1960~1970 年頃に最 大値を示している。これは 1940 年頃から行われ、1964 年頃にピークをみた大気圏原水 爆実験に起源をもつ人工の ¹⁴C の寄与によるものと考えられる。堆積速度が速い KAS は人工の ¹⁴C を含まない堆積物が堆積した効果により、 Δ^{14} C は-450‰付近まで減少して いる。KAN の堆積物は堆積速度が遅いために、KAS ほどの減少傾向は見られない。KAS の 1920~1970 年にかけて見られる幅広い Δ^{14} C のピークは、南湖は北湖に比べて水深が 浅く、波浪や船舶の渡航によって堆積物が巻き上げられたり、あるいは生物擾乱によっ て層序が乱されているためと考えられるが、そもそも年代軸にかなりの不確かさが存在 するために、ここでの詳細な議論は省く。

-78-

Fig.6 Vertical distribution of Δ^{14} C for residue (acid-alkali-insoluble fraction), and acid-soluble fraction

表層部のΔ¹⁴C は KAN の酸アルカリ不溶成分が-80‰、酸可溶成分が+20‰、KAS の酸 アルカリ不溶成分が-450‰、酸可溶成分が-150‰であり、いずれも現在の大気のΔ¹⁴C (~+ 250‰)と異なっている。深度に対する¹⁴C 年代を Fig.7 に示す。KAN、KAS いずれも、大気 圏核実験に起因する人工の¹⁴C 影響前でみると、酸アルカリ不溶成分は実際の堆積年代より 2000~4000 年程度、酸可溶成分は 1000 年程度古い年代を示している。この結果より、特に 酸アルカリ不溶成分の示す¹⁴C 年代は、¹⁴C の希釈が起こっている(古い炭素の影響を受けて いる)ために、実際の堆積年代よりかなり古くなっていることがわかる。より確からしい堆 積年代を得るためには、湖内で生産されたクロロフィルや脂質といったより細かい成分を堆積物 から抽出し、その分析を行うことが必要と思われる。

Fig.7 ¹⁴C ages for residue (acid-alkali-insoluble fraction), and acid-soluble fraction of lake sediments of KAN and KAS

<u>河川堆積物のδ¹³C値</u>

琵琶湖に流入している主な河川の堆積物から抽出した酸アルカリ不溶成分の δ^{13} Cを、Fig.6 に示す。河川堆積物の δ^{13} Cは、大きく4グループに分けられる。1つは琵琶湖北西側の大川、 知内川、百瀬川、安曇川、比良川の5河川(δ^{13} C=-27~-30‰)、2つめは姉川(δ^{13} C=-26.6‰)、 3つめは琵琶湖東側の愛知川、日野川、野洲川の3河川(δ^{13} C=-25~-26‰)、4つめは琵琶湖 唯一の排水路の瀬田川(δ^{13} C=-23.6‰)である。北西側の5河川の δ^{13} Cは低く、堆積物の炭 素が植物起源であるといえる。琵琶湖北部から西部にかけては野坂山地、比良山地が広がっ ていて、平野部はわずかしかなく小規模の町村が点在する。そのため農地としての利用は少 なく、植物由来の炭素が河川に流れやすい状態になっていると考えられる。KANの表層堆積 物の δ^{13} C値は-27.6‰であり、サンプリングポイントに近い知内川(-28.2‰)と百瀬川(-27.0‰) の堆積物の δ^{13} C値に近い。東側の3河川の δ^{13} C値は北西側の5河川の北湖の δ^{13} C値よりも 高く、これらの河川堆積物は主に植物起源であるが、若干石灰岩起源の炭素も入っているこ とが示唆される。琵琶湖北東には石灰岩が露出し採石場もある伊吹山があり、石灰岩が地下 水に溶け出してその地下水を吸収した植物は δ^{13} Cが高くなる。その植物起源の炭素が河川に 流出したと考えることができる。

 δ^{13} Cの値は北西側河川堆積物、北湖堆積物、東側南湖堆積物、南湖堆積物、瀬田川堆積物の順に高くなっていることがわかる。琵琶湖の水の流れは大まかに北湖へ流入する河川から 北湖、さらに南湖であり、最後に南湖の瀬田川から排水していく。この流れの間に軽い炭素 が重い炭素より除去され、次第に δ^{13} C値が高くなった可能性が考えられる。また、南湖周辺 は都市化が進んでいるので、植物由来の炭素が北湖より少なく、逆にセメント(一般に原料 の70~80%が石灰岩)などの高い δ^{13} C値をもつ炭素の影響が北湖よりも大きいために、 δ^{13} C 値が高くなった可能性も考えられる。

【まとめ】

琵琶湖の北湖と南湖の湖底堆積物について、酸-アルカリー酸処理を行い、酸アルカリ不 溶成分(残渣)と酸可溶成分に分け、各成分の抽出量、炭素含有量、δ¹³C 値、¹⁴C 年代を測 定した。酸アルカリ不溶成分は炭化水素、脂肪酸などの有機化合物、酸可溶成分はフルボ酸 が大部分を占めると考えられる。各成分の炭素含有量、δ¹³C 値、Δ¹⁴C いずれも北湖堆積物 では表層部で、南湖堆積物では約 20cm の深さの層で極大値を示す。δ¹³C に関しては酸可溶 成分が酸アルカリ成分より、北湖堆積物では約 2‰、南湖堆積物では 3~4‰高い。表層部の Δ¹⁴C は KAN の酸アルカリ不溶成分が-80‰、酸可溶成分が+20‰、KAS の酸アルカリ不溶 成分が-450‰、酸可溶成分が-150‰であり、いずれも現在の大気のΔ¹⁴C (~+250‰)と異な っている。大気圏核実験隆盛期以前の層準の¹⁴C 年代は、実際の堆積年代より、酸アルカリ 不溶成分で 2000~4000 年程度、酸可溶成分で 1000 年程度古い値を示した。北湖堆積物のΔ ¹⁴C は各成分とも 1940 年頃から急激な上昇が見られ、南湖堆積物では 1960 年頃を中心に幅広 いピークが見られる。また、酸可溶成分のほうが酸アルカリ不溶成分よりδ¹³C、Δ¹⁴C とも に高い値を示すのは、酸可溶成分の構成物質と考えられるフルボ酸¹³C、¹⁴C が濃集している (腐食が進む段階で軽い¹²C が抜けている)ためと考えられる。 河川堆積物の酸可溶成分中の炭素量は湖底堆積物に比べて高く、δ¹³C は酸可溶成分が酸ア ルカリ不溶成分より 3~9%高い値を示した。また、酸アルカリ不溶成分のδ¹³C は都市化の 進んだ琵琶湖南部~東部地域の河川が-27~-25‰であるのに対し、山間部で草木の多い北西部 の河川は-30~-27‰であった。琵琶湖南部~東部地域の河川では、北東部の伊吹山石灰岩由来 の炭素(δ¹³C=-3‰)が地下水に溶け出したものが有機物に取り込まれているためδ¹³C が高 くなったと考えられるが、都市化の違い(植生の違いなど)がでた結果とも考えられる。琵 琶湖の水の流れは大まかに北湖へ流入する河川から北湖、さらに南湖であり、最後に南湖の 瀬田川から排水していく。δ¹³C 値はこの堆積物の順に高くなっていることがわかる。流れの 間に堆積物中の有機物から軽い炭素が除去され、次第にδ¹³C 値が高くなった可能性が考えら れる。

Fig.8 δ ¹³C for the surface sediments of KAN and KAS, several river sediments flowing into Lake Biwa and a limestone at Mt. Ibuki

-81-

【謝 辞】

本研究の琵琶湖湖底泥試料は、滋賀県琵琶湖研究所の実験調査船「はっけん号」に乗船し て採取したものである。試料採取、船上作業を通じて多大なる御支援をして頂いた「はっけ ん号」の乗組員の皆様に深く感謝致します。また、炭素安定同位体比ならびに¹⁴C 測定に際 し、名古屋大学年代測定総合研究センターの中村俊夫教授に御尽力を賜りました。ここに感 謝の意を表します。

【引用文献】

安藤邦彦・南 雅代・小田寛貴・横田喜一郎・山本鋼志 (2003) 有機金属の環境指標としての 有用性の検討. 名古屋大学加速器質量分析計業績報告書, XIV, 155-169.

Horie, S. (1984) Lake Biwa Monographiae Biologicae 54, Dr. W. Junk Publishers, Netherland, 654p.

Ikebe, N.(1956) Cenozoic geohistory of Japan. Proc. 8th Pacific Sci. Congr. ,2 ,446-456.

松本英二 (1975)²¹⁰Pb 法による琵琶湖湖底泥の堆積速度. 地質学雑誌, 81, 301-306.

- 南 雅代・小田寛貴・小島貞男・横田喜一郎 (2002) 琵琶湖南湖の湖底堆積物の Sr 同位体比. 名古屋大学加速器質量分析計業績報告書, XIII, 71-81.
- Minami, M., Oda, H., Yokota, K., Ando, K. and Yamamoto, K. (2003) ⁸⁷Sr/⁸⁶Sr ratios in lake sediments in Lake Biwa, Japan-Environmental change in the last 200years-, *Geochemi. Chem. Acta.*, 67,18S, A292.
- 南 雅代・平野靖幸・小田寛貴・横田喜一郎 (2004) 琵琶湖湖底堆積物の化学的特徴,名古屋 大学加速器質量分析計業績報告書,XV,181-198.
- Nakamura, T., Kojima, S., Ohta T., Oda, H., Ikeda, A., Okuno M., Yokota, K., Mizutani, Y. and Wretschmer, W. (1998) Isotopic analysis and cycling of dissolved inorganic carbon at Lake Biwa, central Japan, *Radiocarbon*, Vol40, No2, 933-944
- Uemura, H. and Ishiwatari, R. (1995) Identification of usual 17b(H)-meret-22(29)-ene in lake sediments, Org.Geochem, 23, 675-680
- Yokota K., Okunishi, S. and Maeda, H. (1996) The imprints on Lake Biwa sediments of record water-level lowering in 1994, Abstract of Annual Meeting of the Sedimentological Society of Japan 14-16.
- 横山卓雄 (1987) 日本の地質 6 近畿地方, 日本の地質 6 『近畿地方』 編集委員会, 共立出版, 東 京, 164-167

Sedimentary environment in Lake Biwa

— Carbon isotope of lake and river sediments — Masayo MINAMI¹⁾, Norihiko TANE²⁾, Hirotaka ODA³⁾ and Kiichiro YOKOTA⁴⁾

1) Department of Earth and Environmental Sciences, Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8602, Japan

- 2) Department of Earth and Planetary Science, School of Science, Nagoya 464-8602, Japan
- 3) Center for Chronological Research, Nagoya University, Nagoya 464-8602, Japan
- 4) Lake Biwa Research Institute, 1-10, Uchidehama, Otsu, Shiga 520-0806, Japan

Lake sediment cores in Lake Biwa, KAN and KAS collected from the northern and southern basins, respectively, were measured for carbon content, δ^{13} C and Δ^{14} C. Acid-alkali-insoluble fraction (residue) and acid-soluble fraction obtained by acid-alkali-acid treatment of the sediments were analyzed. Carbon content of the northern basin sediment (KAN) is very high at the upper layer than 5cm depth and that of the southern basin sediment (KAS) has a highest peak at 19cm depth. δ^{13} C of KAN is the highest at ~5cm depth layer and that of KAS is the highest at ~20cm depth. The highest peak of KAS corresponded to ~1960 A.D. might be effected by nourishing.

 Δ^{14} C suddenly increases between 1950 and 1985 in the vertical distribution of KAN residue. This high Δ^{14} C is due to contribution of artificial ¹⁴C produced in atmosphere by nuclear and thermal nuclear tests after 1950A.D. Δ^{14} C of KAS residue has a wide peak between about 1920 and 1970. This suggests the sediment in the southern basin could be a little disturbed. The ¹⁴C ages of KAN and KAS are older than the age obtained from ²¹⁰Pb or ¹³⁷Cs age, and the true sedimentation age cannot be decided from ¹⁴C data of the sediments in this study. Therefore, the lake sediments need to be separated into much smaller fraction such as chlorophyll and lipid which are derived from lake phytoplankton. δ^{13} C and Δ^{14} C of residue are higher than those of acid-soluble fraction, indicating that ¹³C and ¹⁴C might be relatively gathered in fulvic acid.

The sediments in rivers flowing in Lake Biwa were also measured for C content and δ^{13} C of residue and acid-soluble fractions. Carbon content of the residue in river sediments is especially low, while that of acid-soluble fraction is high. The δ^{13} C of river sediments is higher at the east-south side of Lake Biwa than at north-west side. This might be caused by different amount of plant and matter with high δ^{13} C at the east-south and north-west sides. Furthermore, the δ^{13} C of river sediments could affect the δ^{13} C of bottom sediments in Lake Biwa.