バイカル湖堆積物コア BSS06-G2 の¹⁴C 年代決定 -全岩化学組成変動パターンの解明に向けて-AMS¹⁴C dating of sediment core BSS06-G2 from Lake Baikal, Russia: Toward decoding the variation of bulk-chemical composition

村上拓馬¹*·勝田長貴²·高野雅夫¹·山本鋼志¹·渡邊隆広³·中村俊夫⁴·河合崇欣⁵ Takuma MURAKAMI¹*, Nagayoshi KATSUTA², Masao TAKANO¹, Koshi YAMAMOTO¹, Takahiro WATANABE³, Toshio NAKAMURA⁴, Takayoshi KAWAI⁶

¹名古屋大学大学院環境学研究科・²岐阜大学教育学部・³東北大学大学院理学研究科 ⁴名古屋大学年代測定総合研究センター・⁵(社)国際環境研究協会

¹Graduate School of Environmental Studies, Nagoya University, Fro-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan

²Faculty of Education, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan

³Graduate School of Science, Tohoku University, Aramaki-aza-aoba, Sendai 980-8952, Japan

⁴Center for Chronological Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan

⁵Association of International Research Initiatives for Environmental Studies, 3-1-13 Shibaken, Minato-ku, Tokyo 105-0011, Japan

*Correspondence to: Takuma MURAKAMI; E-mail: takuma@nagoya-u.jp

Keywords: Lake Baikal sediment; Uranium; Biogenic Silicate (Bio-Si); Holocene; Bond event 0-3

Abstract

Lake Baikal is one of the largest lakes in the world and located in the eastern Eurasia. The sediment has recorded various informations of paleoenvironmental changes in Eurasian continent. We measured AMS ¹⁴C dating of a BSS06-G2 (39.0 cm length) sediment core samples in Buguldeika Saddle of Lake Baikal. As a result, we found that variations of chemical abundances in BSS06-G2 core correlated with that of ice-rafted debris content in deep-sea sediments of the North Atlantic.

要旨

ロシア・バイカル湖はユーラシア大陸東部に位置する世界最大の淡水湖であり、その湖底堆積 物には大陸内部で生じた環境変動の歴史が詳細に記録されている。今回、バイカル湖南部・ブグ ルジェイカ鞍部で採取されたグラビティーコア(BSS06-G2、全長:39 cm)について、名古屋大学 タンデトロン加速器質量分析計により¹⁴C年代測定した結果、BSS06-G2 コアの全岩化学組成含有 量と北大西洋の深海堆積物中の漂流岩屑(Ice-Rafted Debris)含有量との間に、明瞭な変動パターン の対比が認められた。

1. コア試料

BSS06-G2 コア試料は、バイカル湖南部の水深 56°N 360 m の湖底(52° 27' 21.7" N, 106° 07' 46.1" E) で 採取されたものである(図1)。この場所は、バイ カル湖の中央湖盆と南湖盆との境界のブグルジェ イカ鞍部にあたり、この対岸にはセレンガ川によ って形成された三角州が発達する。セレンガ川は バイカル湖の最大流入河川であり、その流域面積 はバイカル集水域全体(540,000 km²)の約83%を 占める。よって、広大な後背地からの様々な破砕 物がセレンガ川を通じてバイカル湖に供給される。 一方、ブグルジェイカ鞍部とセレンガ三角州と間 にはバイカル裂谷が走っている。このためセレン ガ三角州で生じた乱泥流やセレンガ川から供給さ れる破砕物が直接ブグルジェイカ鞍部に到達する ことはほとんどなく、ブグルジェイカ鞍部には、 遠洋性の細粒物質から連続的に供給される。

図1 バイカル湖の等深図と試料採取地点 Fig. 1 Bathymetric map of Lake Baikal and a sampling point of BSS06-G2 core.

2. 分析方法

2.1¹⁴C年代

¹⁴C年代測定は、名古屋大学年代測定総合センターの HVEE 社製 Model-4130 AMS タンデトロン 加速器質量分析計を用いて行われた。BSS06-G2 コアには、植物片など直接に形成年代を求めるこ とが可能な物質が含まれていなかったため、軟泥中の全有機物炭素の放射性炭素年代測定を行っ た。本研究では1 cm 間隔で取り分けたコア試料のうちの5 試料(表 1)について分析した。分析試 料の作成は次の手順に従って行われた。まず試料中の炭酸塩を 1.2M の塩酸により完全に除去する。 その後、試料中の塩酸を蒸留水により洗浄し、約 60□の乾燥器に 48 時間放置し試料を乾燥させる。 次に、試料中の有機物を完全に酸化させるために、得られた乾燥試料を酸化銅(CuO)と共に石英 管に封入し、電気炉により 850℃6 時間加熱する。その結果生じた CO₂ ガスから H₂O や NO_x を除去 するために、発生ガスを真空ラインで精製する。最後に、CO₂ ガスを Fe 触媒と水素ガスと共に 650℃6 時間加熱し還元化することで、¹⁴C 測定用試料のグライファイトを作成する。

測定結果の BSS06-G2 コア堆積物の¹⁴C 年代値は、CALIB5.0.1 (Stuiver et al. 1998) と IntCal04 (Reimer et al. 2004) により、暦年代値に変換された。ブグルジェイカ鞍部の最表層の有機物は、 集水域から供給された古い年代の有機物成分を多量に含むため、最表層の年代値は¹⁴C 年代で 1000 年以上の値を示すことが知られている(Colman et al. 1996)。そこで本研究では、予め元の年代値 から最表層の年代値を差し引いた後、それぞれの値を暦年代に校正した。

表1にBSS06-G2コア堆積物の¹⁴C年代測定結果を示す。今回の測定により、コア試料BSS06-G2 は、過去 5,118 cal kyr (calibrated thousand year)、¹⁴C年代値で過去 5,934 年間の堆積記録を保持し ていることが明らかとなった。また、堆積速度は、49 年~1,448 年にかけて 7.0 cm/kyr、1,448 年 ~2,211 年にかけて 13.8 cm/kyr、2,211 年~2,902 年にかけて 14.5 cm/kyr、2,902 年~5,118 年にかけて 4.0 cm/kyr であり、1,448 年~2,902 年にかけて一時的に堆積速度が増したことが明らかとなった。本 研究では、これらの堆積速度を用いて、コア試料 BSS06-G2 の深度を時間に変換した(図 2)。

Table 1 Ages of BSS06-G2 core sediments.				
	Core depth (cm)	Analytical ¹⁴ C age (yr BP)	Corrected ¹⁴ C age (yr BP)	Calibrated age (yr BP)
	0.0	1,418 ± 36	0 ± 36	49 ± 8
	10.0	2,960 ± 3 1	$1,542 \pm 31$	$1,448 \pm 27$
	20.0	3,654 ± 33	$2,236 \pm 33$	2,211 ± 33
	30.0	$4,214 \pm 40$	$2,796 \pm 40$	$2,902 \pm 48$
	39.0	5,934 ± 36	$4,516 \pm 36$	$5,118 \pm 34$

図2 BSS06-G2 コア試料の コア深度と年代。●は¹⁴C 年代値を、◇は暦年代値を 示す。

Fig. 2 Plot of age against core depth, based on 5 AMS ¹⁴C dates for TOC in the BSS06-G2 sediment core. The ¹⁴C dates were calibrated with CALIB 5.0.1 (Stuiver et al., 1998) and IntCal04 (Reimer et al., 2004). *Filled* and *blank dots* indicate ¹⁴C dates and corresponding calibrated dates, respectively.

2.2 化学組成分析

BSS06-G2 コア試料の年代

表 1

BSS06-G2 コアの全岩ウラン濃度は次の手順に従って決定された:堆積物試料を3種類(HNO₃、 H₂O₂と HF)の強酸性溶液に混合する。マイクロウェーブ装置で混合を完全に分解する。作成した 溶出液を Yokogawa Analytical Systems 製の HP4500 誘導結合プラズマ質量分析装置を用いて定量分 析する。一方、生物起源シリカ(Bio-Si)の含有量については、次のようにして決定した(Swan 2009):堆積物試料に Na₂CO₃水溶液を加えて 85□で加熱する。Si 溶出液を Metertek 製の SP-830 吸光光度計により定量分析する。連続抽出法により Si 溶出液中の鉱物由来 SiO₂ 成分を補正し、 Bio-Si 含有量を見積もる。

3.2 結果と考察

図3に過去5200年間のバイカル湖の湖底堆積物BSS06-G2のウラン濃度、Bio-Si含有量と北大西洋深海堆積物中の砕屑物(IRD)量(Bond et al. 2001)の変動曲線を示す。IRD は、高緯度~北極地域で発達した海氷により北大西洋の遠洋域に運搬された陸源破砕物であり、IRD 量が増加する時期は、北大西洋地域が寒冷化したこと示唆するものである。この北大西洋地域の寒冷化は、ボンドイベントと名付けられている。ボンドイベントは完新世で9回生じたとされており、現在から

過去に遡って 0~8の番号付けがなされており、0番は小氷期 (Little Ice Age) に対応するとされている。

バイカル湖の湖底堆積物 BSS06-G2 のウラン濃度は、300-800、1200-1800、2300-3200 と 3700-4300 年前の期間で、わずかな増加傾向を示し(図 3a の BK-0~3)、これらはボンドイベント 0-3 の時期にそれぞれ対応する(図 3c)。バイカル湖のウランの多くは、後背地のウラン鉱床から 供給される。このため通常の湖水に比べて、その濃度は 10 倍程度高いことが知られている。後背 地から湖底に供給されるウランの形態には、物理的風化による鉱物粒子と化学的風化による溶存 イオンの2つの可能性が考えられる。Edgington et al. (1996)は、湖水、河川水、堆積物中のウラン 同位体比の比較から、湖底堆積物中のウランの大部分は水塊中の溶存ウラン起源であることを明 らかにした。加えて、そうした後背地からの溶存ウランの供給量は河川流入量を反映することを 示唆した。

一方で、ボンドイベント 0-3 の時期にバイカル湖周辺地域の湿潤化は、バイカル湖の北湖盆の堆 積物やセレンガ川流域の Gun Nuur 湖の湖底堆積物の研究から報告されている(Goldberg et al. 2005; Wang et al. 2004)。また、気候モデルの計算結果によって、セレンガ川流域の年間海面気圧は、小 氷期(ボンドイベント 0)には温暖な時期に比べて低くなることが明らかにされている(Shindell et al. 2001)。したがって、BSS06-G2 の堆積物のウラン濃度の変動は後背地の乾湿の影響を反映する ものとみなすことができる。

BSS06-G2 の Bio-Si 含有量は、2500-2800 年前に一時的な減少を示す(図 3b)。バイカル湖の湖 底堆積物の珪藻量や Bio-Si 含有量は、気候モデルより復元された気温変化や夏の日射量変動との 相関性から、バイカル湖地域周辺の気温を反映したものであると考えられている(Colman et al. 1995; Prokopenko et al. 2007)。したがって、2500-2800 年前の Bio-Si 含有量の減少は、バイカル湖 地域の寒冷化を意味している。これと類似の変動はバイカル湖の南湖盆で採取された堆積物の珪 藻量で確認されており、この原因はボンドイベント 2 の寒冷化によるものとみなされている (Mackay 2007)。

今回、バイカル湖のブグルジェイカ鞍部で採取したグラビティーコアの化学組成を分析した結果、北大西洋の気候変化に同調する変動パターンを発見することができた。こうしたバイカル湖 地域と北大西洋地域と間の気候システムの関連性の議論は、タンデトロン加速器質量分析計によ るコア試料の高精度¹⁴C年代決定により可能となるものである。

謝辞

本研究は、研究拠点形成費補助金(21 世紀 COE プログラム No.G-4「太陽・地球・生命圏相互作 用系の変動学」)の援助を受けて行われたものである。また、BSS06-G2 コア試料の採取に際しては、 2006 年度バイカルサマースクールの参加者(名古屋大学、金沢大学など)にご協力いただいた。以 上の方々に、感謝いたします。

図 3 ロシア・バイカル湖の湖底堆積物(BSS06-G2)の(a) U 濃度、(b) Bio-Si 含有量と北大西洋深海堆積物中の(C)砕 屑物量(IRD, Bond et al. 2001)。(a)と(b)の灰色部分(BK-0~3)は、相対的にU 濃度の高い期間を示す。(c)の 0~3 は、 ボンドイベントの番号を示す。

Fig. 3 Comparison of (a) U concentration and (b) Bio-Si content in the BSS06-G2 core with (c) lithic stack (IRD) in North Atlantic Ocean sediments (Bond et al., 1997; 2001). The gray lines of BK0 to BK3 in (a) and (b) show sections with a relatively high U concentration. 0 to 3 in (c) denote the Bond events (Bond et al., 2001).

引用文献

- Bond G et al. (2001) Solar Influence on North Atlantic Climate during the Holocene. Science 294:2130-2136.
- Colman SM et al. (1995) Continental climate response to orbital forcing from biogenic silica records in Lake Baikal. Nature 378:769-771
- Colman SM et al. (1996) AMS radiocarbon analyses from Lake Baikal, Siberia: Challenges of dating sediments from a large, oligotrophic lake. Quat Sci Rev 15:669-684

Edgington DN et al. (1996) Uranium-series disequilibrium, sedimentation, diatom frustules, and paleoclimate change in Lake Baikal. Earth Planet Sci Lett 142:29-42

Goldberg EL et al. (2005) Scanning SRXF analysis and isotopes of uranium series from bottom sediments of Siberian lakes for high-resolution climate reconstructions. Nucl Instr Meth Phys Res A543:250-254

Prokopenko AA et al. (2007) Paleoenvironmental proxy records from Lake Hovsgol, Mongolia, and a

synthesis of Holocene climate change in the Lake Baikal watershed. Quat Res 68:2-17

- Reimer PJ et al. (2004) IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon 46:1029-1058
- Shindell DT et al. (2001) Forcing of Regional Climate Change during the Maunder Minimum. Science 294: 2149-2152
- Stuiver M et al. (1998) INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40:1041–1083
- Swan GEA (in press) A comparison of the Si/Al and Si/time wet-alkaline digestion methods for measurement of biogenic silica in lake sediments. J Paleolimnol
- Wang W et al. (2004) Holocene abrupt climate shifts recorded in Gun nuur lake core, northern Mongolia. Chinese Sci Bull 49:520-529